171 |
Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies / Extrinsic estimatives of eigenvalues of elliptic operators on hypersurfacesFilipe MendonÃa de Lima 30 July 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O objetivo desse trabalho à mostrar estimativas superiores para o menor autovalor nÃo-nulo lambda1 do operador de Laplace-Beltrami delta. Os resultados que se seguem foram encontrados por R. Reilly [1] e a dupla A. El Soufi e S. Ilias [2]. A estimativa de Reilly à feita para variedades imersas
no espaÃo euclidiano Rn, e a de Soufi-Ilias para variedades conformemente imersas na esfera Sn.
A partir daà concluiremos o resultado, tambÃm de Soufi-Ilias [2], para subvariedades do espaÃo hiperbÃlico Hn. / The aim of this works is to show superior estimatives to the least non-zero eingenvalue lambda1
of the Laplace-Beltrami operator delta. The forthcoming results were discovered by Reilly [1] and the duo A. El Soufi and S. Ilias [2]. Reillyâs Estimative was calculated for immersed manifolds in the Euclidian Space Rn, and Soufi-Ilias for conformally immersed manifolds in the sphere Sn.Then, we conclude the result, again by Soufi-Ilias [2], for submanifolds of the hyperbolic space Hn.
|
172 |
A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais / The Gauss-Kronecker curvature of minimal hypersurfaces in four dimensional space formsRenato Oliveira Targino 25 August 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Neste trabalho estudamos hipersuperfÃcies mÃnimas completas e com curvatura de Gauss-Kronecker constante em uma forma espacial Q4(c). Provamos que o Ãnfimo do valor absoluto da curvatura de Gauss-Kronecker de uma hipersuperfÃcie mÃnima completa em Q4(c); c ≤ 0; na qual a curvatura de Ricci à limitado inferiormente, à igual a zero. AlÃm disso, estudamos hipersuperfÃcies mÃnimas conexas M3 em uma forma espacial Q4(c) com curvatura de Gauss-Kronecker K constante. Para o caso c ≤ 0, provamos, por um argumento local, que se K à constante, entÃo K deve ser igual a zero. TambÃm apresentamos uma classificaÃÃo de hipersuperfÃcies completas mÃnimas em Q4 com K constante. Exemplos de hipersuperfÃcies mÃnimas que nÃo sÃo totalmente geodÃsicas no espaÃo Euclidiano e no espaÃo hiperbÃlico com curvatura de Gauss-Kronecker nula sÃo apresentados. / In this work we study complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form Q4(c). We prove that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal
hypersurface in Q4(c); c ≤ 0; whose Ricci curvature is bounded from below,is equal to zero. Futher, we study the connected minimal hypersurfaces M3 of a space form Q4(c) with constant Gauss-Kronecker curvature K. For the case c ≤ 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurface
of Q4 with K constant. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space R4 and the hiperbolic
space H4(c) with vanishing Gauss-Kronecker curvature are also presented.
|
173 |
Ãndice e estabilidade de hipersuperfÃcies mÃnimas e de curvatura mÃdia constante na esfera / Index and Stability of Minimal and Constant Mean Curvature Hypersurfaces in SphereRaimundo Alves LeitÃo Junior 11 July 2009 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Neste trabalho estudaremos o Ãndice de hipersuperfÃcies mÃnimas e de curvatura mÃdia constante imersas na esfera Euclidiana Sn+1. Mais precisamente, definiremos o operador de Jacobi de hipersuperfÃcies mÃnimas e de curvatura mÃdia constante usando as fÃrmulas de variaÃÃo de Ãrea, e em seguida estabeleceremos estimativas por baixo para o Ãndice de hipersuperfÃcies mÃnimas imersas em Sn+1 . AlÃm disso, caracterizaremos os toros de Clifford mÃnimos como as hipersuperfÃcies compactas, orientÃveis e mÃnimas em Sn+1 tais que a = -2n, onde a à o primeiro autovalor do operador de Jacobi. Mostraremos que as esferas totalmente umbÃlicas Sn (r) em Sn+1, com 0 < r < 1, sÃo as hipersuperfÃcies fracamente estÃveis em Sn+1. Por Ãltimo, estabeleceremos estimativas por baixo para o Ãndice fraco de hipersuperfÃcies de curvatura mÃdia constante em Sn+1 e caracterizaremos os toros de Clifford Sk (r) x Sn-k (1 - r2) de curvatura mÃdia constante como as hipersuperfÃcies de curvatura mÃdia constante tais que o Ãndice fraco à igual a n + 2, onde (k/n + 2 ) ≤ r ≤ (k + 2/n + 2) Â. / The aim of this work is to study the index either of compact minimal or constant mean curvature hypersurfaces immersed into the Euclidean unit sphere Sn+1. The main ingredient to do that is the Jacobi operator which appears on the second formula of variation of area. On the minimal case we shall present low estimative for the index and we shall show that the minimal Clifford tori are the unique minimal hypersurfaces over which a = -2n , where a stands for the first eigenvalue of the Jacobi operator. Moreover, it is easy to see that totally umbilical sphere Sn (r) em Sn+1 , with 0 < r < 1, are weakly stable. Finally we shall show that the index is bigger that or equal to n+2 for compact constant mean curvature hypersurfaces of Sn+1 provides they have constant scalar curvature. Moreover , Clifford tori Sk (r) x Sn-k (1 - r2) attain such index provided (k/n + 2 ) ≤ r ≤ (k + 2/n + 2) Â.
|
174 |
FolheaÃÃes por hipersuperfÃcies de curvatura mÃdia constante / Foliations by hypersurfaces with constant mean curvatureSamuel Barbosa Feitosa 03 September 2009 (has links)
O presente trabalho apresenta resultados objetivando classificar folheaÃÃes de codimensÃo 1 em variedades Riemannianas cujas folhas tem curvatura mÃdia constante. O principal resultado à o teorema de Barbosa-Kenmotsu-Oshikiri([3]),
Teorema: Seja M uma variedade Riemanniana compacta com curvatura de Ricci nÃo negativa e F um folheaÃÃo de codimensÃo 1 e classe C3 de M, transversalmente orientÃvel, cujas folhas tem curvatura mÃdia constante. EntÃo, qualquer folha de F à uma subvariedade totalmente geodÃsica de M. AlÃm disso, M à localmente um produto Riemanniano de uma folha de F e uma curva normal e a curvatura de Ricci na direÃÃo normal Ãs folhas à zero.
O resultado anterior nÃo pode ser estendido para o caso onde M Ã nÃo compacta. Uma folheaÃÃo contra-exemplo pode ser construÃda a partir de uma funÃÃo f que nÃo satisfaz a conjectura de Bernstein.
No final, sÃo apresentados resultados recentes sobre os problemas abordados e uma prova da desigualdade de Heinz-Chern / In this paper, we work showing results aiming classify foliations of codimension-one in Riemannian manifolds whose leaves have constant mean curvature. The main result is the theorem by Barbosa-Kenmotsu-Oshikiri([3]).
Theorem: LetM be a compact Riemannian manifold with nonnegative Ricci curvature e F, a codimensiononeC3-foliation of M whose leaves have constant mean curvature. The any leaf of F is totally geodesic submanifold of M. Futhermore M is locally a Riemannian product of a leaf of F and a normal curve,and the Ricci curvature in the direction normal to the leaves is zero.
The previous result can not be extended for the case where M is not compact. A foliation counterexample can be built from a function f that does not satisfy the Bernsteinâs conjecture.
At the end, they are present recent results about the boarded problems and a proof of the Heinz-Chern inequality.
|
175 |
Hidden symmetries in gauge theories & quasi-integrablility / Simetrias escondidas em teorias de calibre & quasi-integrabilidadeGabriel Luchini Martins 25 February 2013 (has links)
This thesis is about some extensions of the ideas and techniques used in integrable field theories to deal with non-integrable theories. It is presented in two parts. The first part deals with gauge theories in 3 and 4 dimensional space-time; we propose what we call the integral formulation of them, which at the end give us a natural way of defining the conserved charges that are gauge invariant and do not depend on the parametrisation of space-time. The definition of gauge invariant conserved charges in non-Abelian gauge theories is an open issue in physics and we think our solution might be a first step into its full understanding. The integral formulation shows a deeper connection between different gauge theories: they share the same basic structure when written in the loop space. Moreover, in our construction the arguments leading to the conservation of the charges are dynamical and independent of the particular solution. In the second part we discuss the recently introduced concept called quasi-integrability: one observes soliton-like configurations evolving through non-integrable equations having properties similar to those expected for integrable theories. We study the case of a model which is a deformation of the non-linear Schr¨odinger equation consisting of a more general potential, connected in a way with the integrable one. The idea is to develop a mathematical approach to treat more realistic theories, which is in particular very important from the point of view of applications; the NLS model appears in many branches of physics, specially in optical fibres and Bose-Einstein condensation. The problem was treated analytically and numerically, and the results are interesting. Indeed, due to the fact that the model is not integrable one does not find an infinite number of conserved charges but, instead, a set of infinitely many charges that are asymptotically conserved, i.e., when two solitons undergo a scattering process the charges they carry before the collision change, but after the collision their values are recovered. / Essa tese discute algumas extensões de ideias e técnicas usadas em teorias de campos integráveis para tratar teorias que não são integráveis. Sua apresentação é feita em duas partes. A primeira tem como tema teorias de calibre em 3 e 4 dimensões; propomos o que chamamos de equação integral para uma tal teoria, o que nos permite de maneira natural a construção de suas cargas invariantes de calibre, e independentes da parametrização do espaço-tempo. A definição de cargas conservadas in variantes de calibre em teorias não-Abelianas ainda é um assunto em aberto e acreditamos que a nossa solução pode ser um primeiro passo em seu entendimento. A formulação integral mostra uma conexão profunda entre diferentes teorias de calibre: elas compartilham da mesma estrutura básica quando formuladas no espaço dos laços. Mais ainda, em nossa construção os argumentos que levam `a conservação das cargas são dinâmicos e independentes de qualquer solução particular. Na segunda parte discutimos o recentemente introduzido conceito de quasi-integrabilidade: em (1 + 1) dimensões existem modelos não integráveis que admitem soluções solitonicas com propriedades similares `aquelas de teorias integráveis. Estudamos o caso de um modelo que consiste de uma deformação (não-integrável) da equação de Schrödinger não-linear (NLS), proveniente de um potencial mais geral, obtido a partir do caso integrável. O que se busca é desenvolver uma abordagem matemática sistemática para tratar teorias mais realistas (e portanto não integráveis), algo bastante relevante do ponto de vista de aplicações; o modelo NLS aparece em diversas áreas da física, especialmente no contexto de fibra ótica e condensação de Bose-Einstein. O problema foi tratado de maneira analítica e numérica, e os resultados se mostram interessantes. De fato, sendo a teoria não integrável não é encontrado um conjunto com infinitas cargas conservadas, mas, pode-se encontrar um conjunto com infinitas cargas assintoticamente conservadas, i.e., quando dois solitons colidem as cargas que eles tinham antes tem os seus valores alterados, mas após a colisão, os valores inicias, de antes do espalhamento, são recobrados.
|
176 |
Desenvolvimento de um videoceratógrafo de córnea / Development of a digital vídeo keratoscopyLuiz Eduardo Ribeiro dos Santos 18 April 1997 (has links)
O objetivo deste trabalho e desenvolver um instrumento computadorizado para análise da superfície anterior da córnea humana, gerando para isto, um mapa topográfico bidimensional em código de cores. Utilizando a córnea como um espelho esférico convexo, projeta-se anéis luminosos sobre sua superfície e aquisiciona-se com uma câmera a imagem por ela refletida. Esta imagem e digitalizada e armazenada em um microcomputador para posterior processamento. Através de técnicas de computação gráfica e processamento de imagens digitais, extrai-se da imagem as informações necessárias para construção da topografia desejada. Por fim, a topografia e apresentada em forma de mapas coloridos, sendo cada cor associada a uma determinada dioptria, transmitindo ao médico oftalmologista uma noção exata da superfície da córnea do paciente em análise. / The main goal of this work is to develop a computerized instrument for the analysis of the anterior portion of the human cornea, which displays its result in topographic color maps. Approximating the cornea to a spherical convex mirror, and by projecting a known pattern over it, the reflected image is captured and stored. By means of computer graphics technology and image processing, the necessary information for mathematical calculations is extracted. The resulting maps are color-coded in accordance to the degree of power of each corneal region, that is, to the diopter value. The ophthalmologist can then make important diagnostics and surgery tactics from the analysis of these topographic maps.
|
177 |
Sobre a teoria das transformações de superfícies de curvatura constante / About the theory on transformations of surfaces with constant curvatureGabriela Pereira Sander 22 May 2009 (has links)
A teoria das transforma»ções de superfícies de curvatura constante começou, no fim do século XIX, com o trabalho [3] de A.V. Bäcklund e, em seguida, recebeu importantes contribuições por parte de diversos geômetras, entre eles, L. Bianchi e C. Guichard (veja, por exemplo, [5, 6, 7, 17]). Nessa dissertação apresentamos alguns dos mais importantes resultados desse tópico da geometria diferencial que estão relacionados às superfícies de curvatura média (ou gaussiana não nula) constante. Tais superfícies estão associadas a soluções de equações diferenciais parciais de segunda ordem e não lineares. A interpretação analítica da teoria das transformações de superfícies de curvatura constante nos capacita obter soluções dessas equações diferenciais parciais a partir de uma outra dada, mediante integração de um sistema de equações diferenciais, chamado transformação de Bäcklund. Então, os teoremas de permutabilidade fornecem uma \"fórmula de superposição\" para a construção algébrica de novas soluções / The theory on transformations of surfaces with constant curvature begins, in the late nineteen century, with the article [3] of A.V. Bäcklund and, after, received important contributions from various geometricians, among others, L. Bianchi and C. Guichard (see, for example, [5, 6, 7, 17]). In this dissertation we outline some of the most important results on the theory of surfaces of constant mean (or gaussian) curvature. Such surfaces are associated to the solutions of nonlinear partial differential equations of second order. The analytic interpretation of the theory on transformations of constant curvature surfaces provides a method of obtaining, from a given solution of these partial differential equations, a new solution of the same equation, by integrating a system of differential equations, called Bäcklund transformation. Then, the permutability theorems give a \"superposition formula\" to construct, algebraically, new solutions
|
178 |
Discrete Curvatures and Discrete Minimal SurfacesSun, Xiang 06 1900 (has links)
This thesis presents an overview of some approaches to compute Gaussian and mean curvature on discrete surfaces and discusses discrete minimal surfaces. The variety of applications of differential geometry in visualization and shape design leads to great interest in studying discrete surfaces. With the rich smooth surface theory in hand, one would hope that this elegant theory can still be applied to the discrete counter part. Such a generalization, however, is not always successful. While discrete surfaces have the advantage of being finite dimensional, thus easier to treat, their geometric properties such as curvatures are not well defined in the classical sense. Furthermore, the powerful calculus tool can hardly be applied.
The methods in this thesis, including angular defect formula, cotangent formula, parallel meshes, relative geometry etc. are approaches based on offset meshes or generalized offset meshes.
As an important application, we discuss discrete minimal surfaces and discrete Koenigs meshes.
|
179 |
VYUŽITÍ TVARU DOPRAVNÍ SÍTĚ V HODNOCENÍ DOSTUPNOSTI SLUŽEB / USE OF THE SHAPE OF THE TRANSPORT NETWORK FOR EVALUATION OF THE SERVICE ACCESSIBILITYČernický, David January 2020 (has links)
This thesis deals with factors influencing the average speed on Czech roads. Curvature and inclination of the slopes were selected among the main factors influencing the average speed. Until now, these factors have been considered at discrete intervals, not as continuous functions. The function for calculating the curvature is based on ČSN 73 6101, where the equation with all variables is directly defined. The functional relationship for the movement of vehicles in sloping terrain was created from data from scientific articles. Therefore, an algorithm was implemented in this thesis, which can automatically evaluate the average speed on the road network. Python was used to implement this algorithm. Furthermore, there is a testing section for travel times, which is validated using route planners and also supported by extensive field research. Testing took place in GIS using network analysis methods. Testing has shown that the inclusion of curvature and inclination will significantly improve the calculation of travel times. key words: network analyst, curvature, gis, algorithm
|
180 |
Index Theory and Positive Scalar CurvatureSeyedhosseini, Mehran 14 November 2019 (has links)
No description available.
|
Page generated in 0.0509 seconds