Spelling suggestions: "subject:"curvature dde ricci"" "subject:"curvature dde ficci""
1 |
Hipersuperfícies mínimas completas estáveis harmônicas em uma variedade riemannianaCosta, Caio Eduardo Pinheiro 27 May 2011 (has links)
Submitted by Kleber Silva (kleberbs@ufba.br) on 2016-06-07T19:04:05Z
No. of bitstreams: 1
Dissertação Final - Caio Eduardo Pinheiro Costa.pdf: 632072 bytes, checksum: 7c7529ae9781fbdba862668326aed8c3 (MD5) / Approved for entry into archive by Alda Lima da Silva (sivalda@ufba.br) on 2016-06-13T17:03:21Z (GMT) No. of bitstreams: 1
Dissertação Final - Caio Eduardo Pinheiro Costa.pdf: 632072 bytes, checksum: 7c7529ae9781fbdba862668326aed8c3 (MD5) / Made available in DSpace on 2016-06-13T17:03:21Z (GMT). No. of bitstreams: 1
Dissertação Final - Caio Eduardo Pinheiro Costa.pdf: 632072 bytes, checksum: 7c7529ae9781fbdba862668326aed8c3 (MD5) / Nesta dissertacão, versaremos sobre estabilidade harmonica de hipersuperficies
minimas em uma variedade Riemmaniana. O resultado principal mostra que uma superf
icie mínima completa estavel harmonica em uma variedade Riemanniana de curvatura
de Ricci não negativa e conformemente equivalente ao plano R2 ou ao cilindro S1 R: O trabalho e baseado no artigo dos autores Qing-Ming Cheng and Young Jin Suh, intitulado
\Complete Harmonic Stable Minimal Hypersurfaces in a Riemannian Manifold".
|
2 |
A Curvatura de Gauss-Kronecker de hipersuperfÃcies mÃnimas em formas espaciais 4-dimensionais / The Gauss-Kronecker curvature of minimal hypersurfaces in four dimensional space formsRenato Oliveira Targino 25 August 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Neste trabalho estudamos hipersuperfÃcies mÃnimas completas e com curvatura de Gauss-Kronecker constante em uma forma espacial Q4(c). Provamos que o Ãnfimo do valor absoluto da curvatura de Gauss-Kronecker de uma hipersuperfÃcie mÃnima completa em Q4(c); c ≤ 0; na qual a curvatura de Ricci à limitado inferiormente, à igual a zero. AlÃm disso, estudamos hipersuperfÃcies mÃnimas conexas M3 em uma forma espacial Q4(c) com curvatura de Gauss-Kronecker K constante. Para o caso c ≤ 0, provamos, por um argumento local, que se K à constante, entÃo K deve ser igual a zero. TambÃm apresentamos uma classificaÃÃo de hipersuperfÃcies completas mÃnimas em Q4 com K constante. Exemplos de hipersuperfÃcies mÃnimas que nÃo sÃo totalmente geodÃsicas no espaÃo Euclidiano e no espaÃo hiperbÃlico com curvatura de Gauss-Kronecker nula sÃo apresentados. / In this work we study complete minimal hypersurfaces with constant Gauss-Kronecker curvature in a space form Q4(c). We prove that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal
hypersurface in Q4(c); c ≤ 0; whose Ricci curvature is bounded from below,is equal to zero. Futher, we study the connected minimal hypersurfaces M3 of a space form Q4(c) with constant Gauss-Kronecker curvature K. For the case c ≤ 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurface
of Q4 with K constant. Examples of complete minimal hypersurfaces which are not totally geodesic in the Euclidean space R4 and the hiperbolic
space H4(c) with vanishing Gauss-Kronecker curvature are also presented.
|
3 |
Variedades completas com espectro positivo / Complete varieties with positive spectrumLima, Marcos César de Vasconcelos 17 June 2011 (has links)
LIMA, Marcos Cesar Vasconcelos. Variedades completas com espectro positivo. 2011. 53 f. Dissertação (Mestrado em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2011. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-08-24T16:54:57Z
No. of bitstreams: 1
2011_dis_mcvlima.pdf: 397902 bytes, checksum: 57fa923d41f8ebc402900120bee15521 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-08-25T11:09:14Z (GMT) No. of bitstreams: 1
2011_dis_mcvlima.pdf: 397902 bytes, checksum: 57fa923d41f8ebc402900120bee15521 (MD5) / Made available in DSpace on 2017-08-25T11:09:14Z (GMT). No. of bitstreams: 1
2011_dis_mcvlima.pdf: 397902 bytes, checksum: 57fa923d41f8ebc402900120bee15521 (MD5)
Previous issue date: 2011-06-17 / In this dissertation we will present a theorem about the ends of complete manifold due to Peter Li and Jiaping Wang. This result can be interpreted as a generalization of Cheeger-Gromoll splitting theorem, which states that a complete Riemannian manifold M with nonnegative Ricci curvature then M has only one end or M is isometric to a product space R L, where L is a compact Riemannian manifold with nonnegative Ricci curvature. What Li-Wang did was expand this result for manifolds with Ricci curvature bounded from below by a nonnegative constant. / Nessa dissertação apresentaremos um teorema sobre os fins de um variedade completa devido a Peter Li e Jiaping Wang. Esse resultado pode ser interpretado como uma generalização do teorema splitting de Cheeger-Gromoll, que afirma que se uma variedade Riemanniana M completa tem curvatura de Ricci não-negativa então M tem somente um fim ou M é isomémetrica a um produto da forma R L, onde L é uma variedade Riemanniana compacta com curvatura de Ricci não-negativa. O que Li-Wang fizeram foi ampliar tal resultado para variedades de curvatura de Ricci limitada inferiormente por uma constante negativa.
|
4 |
A rigidez da curvatura de Ricci do hemisfério Sⁿ+ / Rici curvature rigidity of the hemisphere Sⁿ+Jesus, Ana Maria Menezes de 04 December 2009 (has links)
In this work we demonstrate a theorem obtained by F. Hang and X. Wang, which ensures that a compact Riemannian manifold (Mn,g) with nonempty boundary, Ricci curvature greater or equal to (n-1)g, boundary isometric to the (n-1)-dimensional sphere and second fundamental form nonnegative, is isometric to the hemisphere . That result was published in this year in Journal of Geometric Analysis with the title Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature. / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Nesta dissertação apresentamos a demonstração de um teorema obtido por F. Hang e X. Wang, o qual estabelece que uma variedade (Mn,g) Riemanniana compacta com bordo não-vazio, curvatura de Ricci maior ou igual a (n-1)g, e com bordo isométrico à esfera (n-1)-dimensional e segunda forma fundamental não-negativa, é isométrica ao hemisfério . Este artigo foi publicado em 2009 no Journal of Geometric Analysis, com o título Rigidity Theorems for Compact Manifolds with Boundary and Positive Ricci Curvature.
|
5 |
Métricas com curvatura de Ricci positiva via deformações conformes em variedades de dimensões 3 e 4Gois, Alan Santos 04 March 2016 (has links)
Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SE / The main objective of this work is to show the existence of metrics with positive Ricci
curvature in the class as a Riemannian metric with positive scalar curvature on compact
manifolds of dimension 3 and 4. Catino-Djadli [
3
] and Gursky-Viaclovsky [
13
] showed that
bends climbing and Ricci of a metric
g
satisfies an integral inequality in a three-dimensional
compact manifold, then
g
is according to some metric of positive Ricci curvature. In the
first article the authors work in three-dimensional manifolds and second manifolds 4 / O objetivo principal deste trabalho consiste em mostrar a existˆencia de m ́etricas com curva-
tura de Ricci positiva na classe conforme de uma m ́etrica Riemanniana com curvatura escalar
positiva em variedades compactas de dimens ̃ao 3 e 4. Catino-Djadli [3] e Gursky-Viaclovsky
[13] mostraram que se as curvaturas escalar e de Ricci de uma métrica g satisfazem a uma
desigualdade integral em uma variedade compacta tridimensional, então g é conforme a al-
guma métrica de curvatura de Ricci positiva. No primeiro artigo os autores trabalham em
variedades tridimensionais e no segundo em variedades de dimensão 4.
|
6 |
Construção explícita de métricas de Einstein-Finsler com curvatura flag não constante / The explicit construction of Einstein-Finsler metrics with non-constant flag curvatureSilva, Carlos Antonio Freitas da 20 February 2015 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-14T14:51:34Z
No. of bitstreams: 2
Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-05-14T14:53:28Z (GMT) No. of bitstreams: 2
Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) / Made available in DSpace on 2015-05-14T14:53:28Z (GMT). No. of bitstreams: 2
Dissertação - Carlos Antônio Freitas da Silva - 2015.pdf: 659907 bytes, checksum: c43cf65b3e27833fcd6b4ab11eb79239 (MD5)
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Previous issue date: 2015-02-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation we will study Finsler Geometry. In particular, we will study Randers
Geometry that which can be viewed as Riemannian Geometry with a pertubation. Furthermore
Randers metrics are also obtained as solution to Zermelo’s Navigation Problem.
We will also use classification theorems of Randers metrics of constant flag curvature
and Einstein Randers metrics in terms of Zermelo’s Navigation Problem. Using Randers
metrics we are going to construct a 3-parameter family of Einstein-Finsler metrics with
non-constant flag curvature and to get such family we use a Killing vector field and a
Riemannian metric which is the Hawking Taub-NUT metric. / Neste trabalho estudaremos a Geometria de Finsler. Em particular, estudaremos a Geometria
de Randers que pode ser visto como a mais simples perturbação da Geometria
Riemanniana. Além disso, veremos também que métricas de Randers podem ser obtidas
como soluções do Problema Navegacional de Zermelo. Utilizaremos também resultados
que caracterizam métricas de Randers com curvatura flag constante e métricas de Randers
do tipo Einstein em termos do Problema Navegacional de Zermelo. Usando métricas de
Randers vamos construir uma família a 3 parâmetros de métricas de Einstein-Finsler com
curvatura flag não constante e para obter tal família utilizaremos um campo de Killing e
uma métrica Riemanniana que é a métrica de Hawking Taub-NUT.
|
7 |
Um teorema tipo Berstein em R x Hn. / A Berstein theorem in R x Hn.VIEIRA FILHO, Luis Gonzaga. 06 August 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-08-06T14:32:06Z
No. of bitstreams: 1
LUIZ GONZAGA VIEIRA FILHO - DISSERTAÇÃO PPGMAT 2012..pdf: 418239 bytes, checksum: 637639b6b00361fa99f7879c81c1a30c (MD5) / Made available in DSpace on 2018-08-06T14:32:06Z (GMT). No. of bitstreams: 1
LUIZ GONZAGA VIEIRA FILHO - DISSERTAÇÃO PPGMAT 2012..pdf: 418239 bytes, checksum: 637639b6b00361fa99f7879c81c1a30c (MD5)
Previous issue date: 2012-12 / Neste trabalho, usando uma adequada aplicação do chamado princípio do máximo
generalizado de Omori-Yau, obtemos um teorema tipo Bernstein para hipersuperfícies
completas com curvatura média constante imersas no espaço produto R × Hn. Além disso, tratamos o caso em que tais hipersuperfícies são gráficos verticais. / In this work, as suitable application of the so-called Omori-Yau generalized maximum
principle, we obtain a Bernstein type theorem concerning to complete hypersurfaces
with constant mean curvature immersed in the product space R × Hn . Furthermore, we treat the case that such hypersurfaces are vertical graphs
|
8 |
Hipersuperfícies mínimas completas estáveis com curvatura total finita / Stable complete minimal hypersurfaces with finite total curvatureRocha, Robério Batista da 30 March 2010 (has links)
The main goal of this dissertation is to present some results on minimal hypersurfaces in the Euclidean space related to the stability operator. Initially, we will present the demonstrations of the formulas of first and second variations of area and also the demonstration of the Simons inequality. These results (which are basic results of the theory) will be used later. Next we will present the proof of the do Carmo-Peng s theorem showing that a complete stable minimal hypersurface immersed in the Euclidean space with finite L2 norm of the second fundamental form is a hyperplane. We will include in this dissertation a similar result with the L3 norm of the second fundamental form. This last result was proved by Li-Wei in the case where the hypersurface has dimension 3, but we note that proof applies to 3≤n≤7. We will conclude by presenting some results on non-stable minimal hypersurfaces in R^3 due to Fischer-Colbrie and Lopez-Ros. In particular, we will show that the catenoid and Enneper s surface are the only minimal complete orientable surfaces with index equal to one. / O objetivo principal desta dissertação é apresentar alguns resultados importantes sobre hipersuperfícies mínimas no espaço Euclidiano relacionados com o operador de estabilidade. Inicialmente, apresentaremos as demonstrações das fórmulas da primeira e da segunda variações da área bem como a demonstração da desigualdade de Simons. Estes resultados, que são básicos da teoria, serão usados posteriormente. Em seguida, apresentaremos a demonstração do teorema de do Carmo-Peng, o qual assegura que uma hipersuperfície mínima completa estável imersa no espaço Euclidiano com a norma L2 da segunda forma fundamental finita é um hiperplano. Incluiremos na dissertação um resultado análogo com a norma L3 da segunda forma fundamental. Este último resultado foi provado por Li-Wei no caso em que a hipersuperfície tem dimensão 3, mas notamos que a demonstração se aplica para 3≤n≤7. Concluiremos apresentando alguns resultados sobre hipersuperfícies mínimas não estáveis no R^3 obtido por Fischer-Colbrie e López-Ros. Em particular, mostraremos que o catenóide e a superfície de Enneper são as únicas superfícies mínimas completas e orientadas com índice igual a um.
|
9 |
O teorema de Alexandrov / The theorem of Alexandrov.Silva Neto, Gregorio Manoel da 04 August 2009 (has links)
The goal of this dissertation is to present a R. Reilly's demonstration of the theorem of Alexandrov . The theorem states that The only compact hypersurfaces, conected, of constant mean curvature, immersed in Euclidean space are spheres. The theorem of Alexandrov was proved by A. D. Alexandrov in the article Uniqueness Theorems for Surfaces in the Large V, published in 1958 by Vestnik Leningrad University, volume 13, number 19, pages 5 to 8. In his demonstration, Alexandrov used the famous Principle of tangency, introduced by him in that article. In the year 1962, M. Obata shown in Certain Conditions for a Riemannian Manifold to be isometric With the Sphere, published by the Journal of Mathematical Society of Japan, volume 14, pages 333 to 340, that a Riemannian Manifold M, compact, connected and without boundary, is isometric to a sphere, since the Ricci curvature of M satisfies certain lower bound. This theorem solves the problem of finding manifolds that reach equality in the estimate of Lichnerowicz for the first eigenvalue. In 1977, R. Reilly, in the article Applications of the Hessian operator in a Riemannian Manifold, published in Indianna University Mathematical Journal, volume 23, pages 459 to 452, showed a generalization of the Obata theorem for compact manifolds with boundary. As an example of the technique developed in this demonstration, he presents a new demonstration of the theorem of Alexandrov. This demonstration, as well as the techniques involved are the object of study of this work. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O objetivo desta dissertação é apresentar uma demonstração de R. Reilly para o Teorema de Alexandrov. O teorema estabelece que As únicas hipersuperfícies compactas, conexas, de curvatura média constante, mergulhadas no espaço Euclidiano são as esferas. O teorema de Alexandrov foi provado por A. D. Alexandrov no artigo Uniqueness Theorems for Surfaces in the Large V, publicado em 1958 pela Vestnik Leningrad University, volume 13, número 19, páginas 5 a 8. Em sua demonstração, Alexandrov usou o famoso Princípio de Tangência, introduzido por ele no citado artigo.
No ano de 1962, M. Obata demonstrou em Certain Conditions for a Riemannian Manifold to be Isometric With a Sphere, publicado pelo Journal of Mathematical Society of Japan, volume 14, páginas 333 a 340, que uma variedade Riemanniana M, compacta, conexa e sem bordo, é isométrica a uma esfera, desde que a curvatura de Ricci de M satisfaça determinada limitação inferior. Este teorema resolve o problema de encontrar as variedades que atingem a igualdade na estimativa de Lichnerowicz para o primeiro autovalor. Em 1977, R. Reilly, no artigo Applications of the Hessian Operator in a Riemannian Manifold, publicado no Indianna University Mathematical Journal, volume 23, páginas 459 a 452, demonstrou uma generalização do Teorema de Obata para variedades compactas com bordo. Como exemplo da técnica desenvolvida nesta demonstração, ele apresenta uma nova demonstração do Teorema de Alexandrov. Esta demonstração, bem como as técnicas envolvidas, são o objeto de estudo deste trabalho.
|
10 |
Difeomorfismos conformes que preservam o tensor de Ricci em variedades semi-riemannianas / Conformal diffeomorphism that preserving the Ricci tensor in semi-riemannian manifoldsCARVALHO, Fernando Soares de 28 January 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1
Dissertacao Fernando Soares de Carvalho.pdf: 3468325 bytes, checksum: 30df6cf936483cf5aec035b1bdd9d208 (MD5)
Previous issue date: 2011-01-28 / NOTE: Because some programs do not copy symbols, formulas, etc... to view the summary and the contents of the file, click on PDF - dissertation on the bottom of the screen. / OBS: Como programas não copiam certos símbolos, fórmulas... etc, para visualizar o resumo e o todo o arquivo, click em PDF - dissertação na parte de baixo da tela.
|
Page generated in 0.0567 seconds