• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 9
  • 6
  • 5
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 59
  • 59
  • 15
  • 13
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimization of intermediate storage size in a production process subjected to Variable customer demands for an efficient material Utilization. : A case study on the production process at SKF

Godians, Samuel January 2014 (has links)
Intermediate storage system optimization is an essential aspect which this report tends to look upon and putting effort on improving operating efficiency then reducing the capital cost of batch/ semi-continuous or flow production process by looking at the extent of estimating the figures of boxes that are made to be in the intermediate storage system through evaluations. Additionally, intermediate storage can reduce the effects of process parameter variations, such as recipe inaccuracies and operator errors, in which process operations are particularly visible. In a channel of operations, where there are many amount of shift that are inevitable to pass through in order to complete production process to get a finished product. Hence, longer operating horizon, process variations must include a measurable parameter, either shorter or longer to avoid failure of meeting product specification and limitation of meeting end users specification. Intermediate storage system as a back-up function in case of some sudden failure within the production line In this thesis, it is notable to make an amendment, as a way of knowing the accuracy of boxes of bearing work-piece that will be maintaining a certain intermediate storage system to feed the next shift of workstation in a continuous process with accurate or known estimated number of work-piece in a role, until the final product is been made. Hence, in this research, there are many theory that were adopted to give a clear view of what will be obtainable in the whole research both in empirical finding to have a definite result. To achieve the above goal this thesis followed a steps to fulfil its objective. Steps 1 and 2 were to know the strategic plans as well as operating methods through theory also, to know the production line balancing to have a view of time measured through the theory. Step 3 and 4 adoptions of theory and empirical finding to calculate, productivity through the source of cycle time, as well as facility plan and to give analysis of intermediate storage system, in optimization of production line to make a work flow achievable at the end, to meet the customers demand.
12

The impact of replenishment parameters and information sharing on bullwhip effect for short life cycle products

Reddy Kothi, Abhilash, January 2007 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2007. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
13

Analysis Of Minimum Safe Cycle Time In Injection Molding: Selection Of Frozen Layer Thickness

Chang, Keh-Chyou 05 September 2008 (has links)
No description available.
14

Projektmetod för cykeltidsoptimering av CNC-maskiner / Project method for cycle time optimization of CNC machines

Dackebro, Johan, Jansson, Alexander January 2023 (has links)
Inom den automatiserade bearbetande metallindustrin är ett sätt att effektivisera produktionen, och följaktligen stärka konkurrenskraft, att cykeltidsoptimera CNC-maskiner. I avsikt att denna typ av optimeringsarbeten inte ska ske ostrukturerat, utan med systematik, syftar detta arbete till att arbeta fram ett förslag på en projektmetod avsedd för cykeltidsoptimering av CNC-maskiner. Vidare har intervjuer, arbetsuppföljning och observationer vid Scania CV ABs vevaxelproduktion tillsammans med relaterade litterära studier analyserats och filtrerats; och sedan använts för att tillhandahålla svar på arbetets frågeställningar: (1) Kan onödiga aktiviteter i CNC-cykler identifieras och kan dessa i sådant fall minimeras eller uteslutas? (2) Hur kan en projektmetod vara uppbyggd och vad kan den uppbyggnaden innefatta? Åtta stycken täckande aktiviteter i CNC-cyklar med optimeringspotential noterades. Där innefattas exempelvis väntetider, långsamma och onödiga sekvenser samt aktiviteter som kanske parallellt men ej gör det. Även praktisk arbetsgång för cykeltidsoptimering av CNC-maskiner och metoder för annan optimering identifierades. Sammanvägningen av de empiriska resultaten och de relaterade studierna visade att fasindelning och innehållet i en projektmetod kan skilja beroende på om metoden är generell eller specifikt anpassad. Efter att ha arbetat samtliga empiriska resultat och relaterade studier konstruerades ett förslag på projektmetod. Metoden har fem faser (potential, initiering, planering, utförande och avslutning) och presenteras i ett användargränssnitt. Gränssnittet tydliggör vad som ska utföras i respektive fas och hur. I ett utökat arbete kan gränssnittet utvecklas och optimeringsaspekter som kräver mer omfattande lösningar kartläggas samt definieras kopplat till hur de bör hanteras. / Within the automated metalworking industry, one way to make production more effective, and consequently strengthen and maintain competitiveness, is to optimize the cycle time of CNC machines. With the intention that this type of optimization work should not be done unstructured, but systematically, this work aims to develop a proposal for a project method intended for cycle time optimization of CNC machines. Furthermore, interviews, workfollow-up and observations at Scania CV AB's crankshaft production together with related literary studies have been analyzed and filtered; and then used to provide answers to the work's research questions: (1) Can unnecessary activities in CNC cycles be identified and, if so, can these be minimized or excluded? (2) How can a project method be structured and what can that structure include? Eight covering activities in CNC cycles with optimization potential were noted. This includes, for example, waiting times, slow and unnecessary sequences and activities that can take place parallelly but do not. Practical workflow for cycle time optimization of CNC machines and methods for other types optimization were also identified. The balance of the empirical results and the related studies showed that the phasing and content of a project method can differ depending on whether the method is general or specifically adapted. After working through all the empirical results and related studies, a proposal was put together for a project method. The method has five phases (potential, initiation, planning, execution and termination) and is presented in a user interface. The interface clarifies what must be done in each phase and how. In an extended work, the interface can be further developed and optimization aspects that require more comprehensive solutions can be mapped and defined in connection with how they should be handled.
15

Undersökning av skillnader mellan planerad och verklig produktionstid : – En fallstudie hos AQ Group i Pålsboda

Hamryni, Adrian, Mohamed Ibrahim, Dahir January 2020 (has links)
På senaste tiden har leveransprecision blivit allt viktigare eftersom kunder idag kännetecknas av att vara mer tidskänsliga och ständigt söker efter produkter som är specifikt anpassade till kunden. Tid har därmed betraktats som ett kriterium för konkurrens och är betydande för företag att kunna konkurrera på marknaden. Osäkerheter i marknaden har en stor påverkan på leveransprecision och det är en stor utmaning för företag att planera produktion utifrån dessa osäkerheter. När produktion för en artikel planeras måste en planerare ta hänsyn till osäkerheter som exempelvis att en maskin kan sluta fungera, att en defekt produkt måste omarbetas eller att det tar längre tid än planerat för att utföra ett arbetsmoment som leder till att en ledtid blir längre. Syftet med studien var att identifiera orsaker till skillnaden mellan planerad och verklig produktionstid samt ge förbättringsförslag för att minska skillnaden. Syftet har uppfyllts med hjälp utav en fallstudie på AQ Group i Pålsboda och genom intervjuer där planerad och verklig produktionstid har undersökts. En litteraturstudie har utnyttjats och tre frågeställningar har formulerats till studien. Dessa frågeställningar lyder: Hur ser skillnaden ut mellan planerad och verklig produktionstid? Vad är orsakerna till dessa skillnader? Hur kan dessa orsaker elimineras? Under det teoretiska avsnittet har fokuset varit på cykeltider, ställtider, produktionstid, Lean och produktionsplanering. Resultatet visar en total skillnad på 24 % mellan den planerade och verkliga produktionstiden över en 5-dagarsperiod. Några orsaker som påträffats är att de standardiserade arbetssätten inte är uppdaterade, inte är tvingande för operatörer att utföra och att det inte existerar några illustrationer för standardiseringen. En annan orsak är onödiga arbetsmoment där verktyg ligger långt ifrån arbetsstationerna och ibland fattas som gör att produktionstiden blir längre än planerat. Avslutningsvis presenteras kritiska förbättringsförslag som specifikt påverkar skillnaden i produktionstiderna och allmänna förbättringsförslag som AQ Group i Pålsboda kan ta nytta av för att effektivisera verksamheten. / In recent times delivery precision has become more important to customers, which today are characterized by being more time sensitive and constantly looking for products that are specifically tailored to the customer. Time is being seen as a criterion for competitors and it is important for companies to be able to compete in the market. Uncertainties in the current market have an effect on delivery precision and it is a major challenge for companies to plan production based on these uncertainties. When production for an article is planned, it should be planned in consideration of uncertainties, for example, a machine may break down, a defective product may need a rework or that it takes longer than planned to carry out an operation leading to a longer lead time. The purpose of the study was to identify causes of difference between planned and actual production time and to provide improvement suggestions to reduce the difference. The purpose has been achieved through a case study in AQ Group in Pålsboda with help of interviews where planned and actual production time has been investigated. A literature study has been used as well as three questions. These questions are: What is the difference between planned and actual production time? What are the causes of these differences? How can these causes be eliminated? During the theoretical section, the focus has been on cycle times, setup times, production time, Lean and production planning. The results show a total difference of 24% between the planned and actual production time over a 5-day period. Causes that have been found are that the standardized working methods are not up to date, are not mandatory for operators to perform and that there exist no illustrations for the standardization. Another cause is unnecessary work steps where tools is far away from the workstations and sometimes missing which leads to the production time being longer than planned. Lastly the study provides critical improvement suggestions that specifically affect the differences between planned and actual production times and general improvement suggestions that AQ Group in Pålsboda can take part of to streamline operations.
16

Antecedents of Sales Lead Performance: Improving Conversion Yield and Cycle Time in a Business-to-Business Opportunity Pipeline

Bradford, William R 01 May 2016 (has links)
Identifying new potential customers and developing opportunities until converted to sales is a critical function of a sales organization. In most industrial business contexts, opportunities are monitored within a sales pipeline or funnel, to track the status and progress from the initial stage until the sale is completed, often using sales force automation tools, such as customer relationship management (CRM) systems to manage the process. While much is written about the adoption, usage, and failures of CRM, little empirical research exists to fully examine the levers to improve the conversion performance of sales leads, particularly in a business-to-business (B2B) industrial context. The research based view (RBV) of the firm suggests that competitive advantage is gained from a company’s distinct resources, and that in technology and other fast-paced markets, success is further determined by fast adaptation, in what is know as dynamic capability theory. This research examined certain key sales capabilities, within the high technology industrial B2B sector, to understand the impact of sales effort, sales ability and lead source, on sales lead conversion yield and cycle time. By studying the extensive CRM data base of a large semiconductor company, along with various human resource records, a quantitative study was performed to address this research, while providing useful value to sales managers seeking to improve the lead conversion performance of their organizations. Sales effort, as measured by number of sales calls made per week, and percent of time spent on selling activities was shown to modestly accelerate sales cycle times, but have no effect on the percentage of opportunities that result in wins. Sales ability, measured by annual performance ratings, prior year quota attainment and years of experience showed no effect on cycle time, nor win percentage. The most notable contribution of this research is the illumination of sales effort effects on cycle time, as previous studies of sales cycle time influences have been inconclusive. Against the backdrop of a general lengthening of industrial sales cycle times, understanding that salesperson effort can reduce the time that it takes to win an opportunity can drive meaningful improvements in salesforce efficiency and productivity.
17

Optimering av produktflöde utifrån tillverkningstid och genomloppstid / Optimization of a product flow in consideration of manufacturing time and cycle time

Ceric, Dino, Esfahani, Ali January 2017 (has links)
Föreliggande arbete redogör för hur ett produktflöde optimeras utifrån tillverkningstid och genomloppstid. Genom att beröra teorier kring bland annat flöden, klockstudier, standardiserade arbetssätt och layout har ett produktflöde bestående av flera olika arbetsstationer kunnat optimeras. Undersökningen gjordes i syfte att belysa ett vanligt problem inom den tillverkande industrin, vilket resulterat i reducerade genom- och tillverkningstider. De ursprungliga genomloppstiderna uppmättes till 4 dagar 158 minuter för den första produkten och 4 dagar 162 minuter för den andra produkten. Efter optimering blev genomloppstiderna 4 dagar 80 minuter för den första produkten respektive 4 dagar 107 minuter för den andra, vilket innebär en minskning av genomloppstiderna på 78 respektive 55 minuter. De urprungliga tillverkningstiderna var 101 minuter för den första produkten respektive 135 minuter för den andra produkten. Efter implmenterad optimering uppmättes tillverkningstiderna till 78 minuter repsketive 106 minuter, vilket visar på förbättringar med 23 minuter för den första produkten och 29 minuter för den andra produkten. Avslutningsvis kan resultaten från arbetet tillämpas på andra tillverkande företag, eftersom det som beskrivits i rapporten till stor del är av generell natur. / This paper discusses how a product flow can be optimized considering the manufacturing and cycle times. The investigation shows how a product flow consisting of different workstations can be optimized. The aim of the investigation is to illustrate a common problem in the manufacturing industry, and has resulted in reduced cycle and manufacturing times. The original cycle times were 4 days 158 minutes for the first product and 4 days 162 minutes for the second product. After optimization, the cycle time for the first product was 4 days and 80 minutes and the cycle time for the second 4 days and 107 minutes. This shows an improvement of 78 minutes for the first product and 55 minutes for the second. The original manufacturing times were measured as 101 minutes for the first product and 135 minutes for the second product. The manufacturing times after optimization were 78 minutes for the first product and 106 minutes for the second, which shows an improvement of 23 minutes and 29 minutes respectively. In conclusion, the results in this paper are generic and can be applied by other manufacturing companies.
18

Cykeltidsoptimering av sjuaxligt robotsystem / Cycle time optimization in a 7 DOF robot system

Eklund, Elin January 2005 (has links)
<p>This master thesis studies how much the cycle time, i.e. the time it takes for an industrial robot to perform a given task, can be reduced if an extra degree of freedom (DOF) is added to the robot system. The extra DOF consists of a linear track, which is supposed to be used in an optimal way. The problem has been studied using simulations in the robot simulation tool RobotStudio. </p><p>To be able to run an optimization in Matlab, with the RobotStudio simulation cycle time as the object function, communication between Matlab and RobotStudio has been set up with an interface written in Visual Basic. An algorithm has been developed to solve the problem. Two different optimization methods have been examined and compared. </p><p>The resulting algorithm has been applied to test cases. The results show that the cycle time in several cases can be reduced by 20-30 percent, if the movements along the track are optimized with the suggested method.</p>
19

Cykeltidsoptimering av sjuaxligt robotsystem / Cycle time optimization in a 7 DOF robot system

Eklund, Elin January 2005 (has links)
This master thesis studies how much the cycle time, i.e. the time it takes for an industrial robot to perform a given task, can be reduced if an extra degree of freedom (DOF) is added to the robot system. The extra DOF consists of a linear track, which is supposed to be used in an optimal way. The problem has been studied using simulations in the robot simulation tool RobotStudio. To be able to run an optimization in Matlab, with the RobotStudio simulation cycle time as the object function, communication between Matlab and RobotStudio has been set up with an interface written in Visual Basic. An algorithm has been developed to solve the problem. Two different optimization methods have been examined and compared. The resulting algorithm has been applied to test cases. The results show that the cycle time in several cases can be reduced by 20-30 percent, if the movements along the track are optimized with the suggested method.
20

Developing a procedure to optimise cycle time in a manufacturing plant / Venter J.P

Venter, Johannes Petrus January 2011 (has links)
Productivity advances generated from ‘lean manufacturing’ are self–evident. Plants that adopt ‘lean’ are more capable of achieving shorter lead times, less waste in the system and higher quality levels. The goal of this study was to ascertain which ‘lean’ tools and techniques are available for use. A matrix was constructed with a summation of the authors who agree that specific ‘lean’ tools will reduce cycle time. It was found that reduced set–up time and waste elimination are most affected by the implementation of ‘lean’ tools and techniques. An empirical study was conducted to confirm the results of the literature study. The respondents’ knowledge on the ‘lean’ tools was also tested. It was found that respondents have a sound understanding of set–up time; they agree that it must be reduced in the plant. Pre–scientific evidence and the response from the empirical study confirm that there is a substantial amount of waste in the factory. A current state value–stream map was drawn from a single welded part Product X. The value–stream was analysed to reduce the cycle time in the process, with the focus on set–up time reduction and waste elimination. The future state value–stream map was drawn, displaying astonishing results. A continuous improvement (kaizen) programme will help reduce the cycle time even further by making use of the other ‘lean’ tools discussed in this study. This programme forms part of the procedure to optimise cycle time. / Thesis (M.B.A.)--North-West University, Potchefstroom Campus, 2012.

Page generated in 0.0733 seconds