21 |
Genetic polymorphism in dextromethorphan metabolism by CYP2D6 and CYP3A4 enzyme isoforms / Mthokozisi Muziwandile Nkosingiphile MgwabiMgwabi, Mthokozisi Muziwandile Nkosingiphile January 2003 (has links)
Most administered drugs are metabolised in the liver by Phase I enzymes and more
importantly by the cytochrome P450 (CYP) system. The extent of first-pass metabolism is
important in determining whether the drug will have therapeutic or adverse effects after being
administered to a patient. To date the CYP family has been shown to consist of 74 families
denoted as CYPl to CYP118, and only a few families are significantly involved in drug
metabolism. CYP3A4 is the most important isoenzyme followed by CYP2D6, CYP2C9, and
CYP2C19 with a small contribution by CYP2E1, CYP2A6, and CYPlA4. CYP2D6 and
CYP3A4 enzyme isoforms have been well established to exhibit interethnic and interindividual
variability with regard to drug metabolising capacity.
Mutation on the gene coding for a metabolising enzyme is a major cause of variation in drug
metabolism. This mutation gives rise to allelic variants producing enzymes with altered
metabolising activity. The presence of an allele with decreased metabolic activity in an
individual gives rise to the poor metabolising (PM) phenotype. When the PM phenotype
occurs at a frequency of more than 1% within a given population, then the term genetic
polymorphism applies. The aberrant metabolic capacity translates into variable drug
responses of more than 20-fold, leading to different susceptibility to sub-therapeutic effects or
adverse drug reactions. A significant number of drugs, such as the B-adrenergic blockers,
antidepressants, antipsychotic and antiarrhythmic agents, are entirely or partly metabolised by
CYP2D6 and CYP3A4. Genetic polymorphism is especially important for drugs with a narrow
therapeutic/toxicity window.
Phenotyping involves the use of a probe drug that is administered to the subject, followed by
determination of the parent drug and its metabolites in the urine. The aim of this study was to
develop and validate an HPLC method for phenotypic determination of the CYP3A4 and
CYP2D6 enzymes, followed by the application of the assay in a random heterogeneous
population of males.
Dextromethorphan (DXM) was used as an in vivo probe for simultaneous determination of the
phenotypic expression of CYP2D6 and CYP3A4. An HPLC method coupled with a
fluorescence detector was developed for the phenotypic determination of CYP2D6 and
CYP3A4 iso-enzymes as determined by the concentration of dextromethorphan/dextrophan
(DXM/DX) and dextromethorphan/3methoxy-morphinan (DXM/3MM) metabolic ratios
respectively. The compounds were separated on a phenyl column (150 x 4,6 mm, 5-um
particle size) serially connected to nitrile column (250 x 4,6 mm, 5-um particle size) using
mobile phase of 80% (1.5% glacial acetic acid and 0.1% triethyl amine in distilled water) and
20% acetonitrile. Solid phase extraction was used to extract the analytes from urine samples
using silica cartridges. The suitability of the method was demonstrated in a preliminary study
with sixteen healthy Caucasian males. After a single oral 30 mg DXM dose, the volunteers
were required to collect all urine samples voided 8 hours post oral dose. DXM/3HM and
DXM/DX metabolic ratios were determined from collected urine samples.
The method was validated for DXM and DX at a concentration range of 0.25 - 30 ug/ml, and at
0.025 - 3 ug/ml for 3MM. Calibration curves were linear with R2 values of at-least 0.999 for all
compounds of interest. Recoveries were 97%, 93%, and 65% for DX, DXM and 3MM,
respectively. The method was reproducible with intra-day precision having coefficients of
variation percentage (CV%) of less than 17% for all analytes. Inter-day precision had a CV%
of less than 14% for all analytes. The limit of detection was 30 ug/ml for all compounds. All
volunteers were classified with an extensive metaboliser (EM) phenotype. In conclusion the
method described is suitable for polymorphic determination of CYP2D6 and CYP3A4 in a
population study, and may have value in further studies planned at investigating the critical
issue of racial genetic polymorphism in ethnic groups in South Africa. / Thesis (M.Sc. (Pharm.))--North-West University, Potchefstroom Campus, 2004.
|
22 |
Genetic polymorphism in dextromethorphan metabolism by CYP2D6 and CYP3A4 enzyme isoforms / Mthokozisi Muziwandile Nkosingiphile MgwabiMgwabi, Mthokozisi Muziwandile Nkosingiphile January 2003 (has links)
Most administered drugs are metabolised in the liver by Phase I enzymes and more
importantly by the cytochrome P450 (CYP) system. The extent of first-pass metabolism is
important in determining whether the drug will have therapeutic or adverse effects after being
administered to a patient. To date the CYP family has been shown to consist of 74 families
denoted as CYPl to CYP118, and only a few families are significantly involved in drug
metabolism. CYP3A4 is the most important isoenzyme followed by CYP2D6, CYP2C9, and
CYP2C19 with a small contribution by CYP2E1, CYP2A6, and CYPlA4. CYP2D6 and
CYP3A4 enzyme isoforms have been well established to exhibit interethnic and interindividual
variability with regard to drug metabolising capacity.
Mutation on the gene coding for a metabolising enzyme is a major cause of variation in drug
metabolism. This mutation gives rise to allelic variants producing enzymes with altered
metabolising activity. The presence of an allele with decreased metabolic activity in an
individual gives rise to the poor metabolising (PM) phenotype. When the PM phenotype
occurs at a frequency of more than 1% within a given population, then the term genetic
polymorphism applies. The aberrant metabolic capacity translates into variable drug
responses of more than 20-fold, leading to different susceptibility to sub-therapeutic effects or
adverse drug reactions. A significant number of drugs, such as the B-adrenergic blockers,
antidepressants, antipsychotic and antiarrhythmic agents, are entirely or partly metabolised by
CYP2D6 and CYP3A4. Genetic polymorphism is especially important for drugs with a narrow
therapeutic/toxicity window.
Phenotyping involves the use of a probe drug that is administered to the subject, followed by
determination of the parent drug and its metabolites in the urine. The aim of this study was to
develop and validate an HPLC method for phenotypic determination of the CYP3A4 and
CYP2D6 enzymes, followed by the application of the assay in a random heterogeneous
population of males.
Dextromethorphan (DXM) was used as an in vivo probe for simultaneous determination of the
phenotypic expression of CYP2D6 and CYP3A4. An HPLC method coupled with a
fluorescence detector was developed for the phenotypic determination of CYP2D6 and
CYP3A4 iso-enzymes as determined by the concentration of dextromethorphan/dextrophan
(DXM/DX) and dextromethorphan/3methoxy-morphinan (DXM/3MM) metabolic ratios
respectively. The compounds were separated on a phenyl column (150 x 4,6 mm, 5-um
particle size) serially connected to nitrile column (250 x 4,6 mm, 5-um particle size) using
mobile phase of 80% (1.5% glacial acetic acid and 0.1% triethyl amine in distilled water) and
20% acetonitrile. Solid phase extraction was used to extract the analytes from urine samples
using silica cartridges. The suitability of the method was demonstrated in a preliminary study
with sixteen healthy Caucasian males. After a single oral 30 mg DXM dose, the volunteers
were required to collect all urine samples voided 8 hours post oral dose. DXM/3HM and
DXM/DX metabolic ratios were determined from collected urine samples.
The method was validated for DXM and DX at a concentration range of 0.25 - 30 ug/ml, and at
0.025 - 3 ug/ml for 3MM. Calibration curves were linear with R2 values of at-least 0.999 for all
compounds of interest. Recoveries were 97%, 93%, and 65% for DX, DXM and 3MM,
respectively. The method was reproducible with intra-day precision having coefficients of
variation percentage (CV%) of less than 17% for all analytes. Inter-day precision had a CV%
of less than 14% for all analytes. The limit of detection was 30 ug/ml for all compounds. All
volunteers were classified with an extensive metaboliser (EM) phenotype. In conclusion the
method described is suitable for polymorphic determination of CYP2D6 and CYP3A4 in a
population study, and may have value in further studies planned at investigating the critical
issue of racial genetic polymorphism in ethnic groups in South Africa. / Thesis (M.Sc. (Pharm.))--North-West University, Potchefstroom Campus, 2004.
|
23 |
Electrochemical cytochrome P450 enzymatic biosensors for the determination of the reactivity of TB drugsRassie, Candice January 2020 (has links)
Philosophiae Doctor - PhD / Tuberculosis (TB) remains a global epidemic despite the fact that treatment has been available since the 1950’s. This disease is highly contagious and spreads via transmission of the Mycobacterium Tuberculosis (MTB) tubercle via coughing, sneezing and spitting. The disease has various side effects including weight loss, fatigue and even death. To date no cure has been found for TB and thus optimisation of treatment is a constant focus in health related research. TB is highly prevalent in South Africa due to the increased level of patients who are co-infected with HIV. Treatment for TB consists of first line drugs including isoniazid (INH), ethambutol (ETH), pyrazinamide (PYR) and rifampicin (RIF). These drugs are highly effective but also produce many adverse drug reactions (ADR’s) over the 6-month course of treatment. These reactions lead to patients not completing the course, losing quality of life and ultimately adding to the development of drug resistant strains of TB. A method of minimising these ADR’s is the development of a phenotype sensor, which is able to determine the metabolic profile of patients. Metabolic profiles play a huge role in the efficacy of treatment by tailoring treatment in order for patients to stay within the therapeutic range of treatment. This would in turn minimise both toxicity and ineffective treatment. Various methods for the quantification of drugs have been developed such as high performance liquid chromatography (HPLC), mass spectrometry (MS) and ultra-violet visible spectroscopy (UV-vis). / 2023-12-01
|
24 |
Bedeutung erblicher Faktoren für die Variabilität der Pharmakokinetik von Arzneimitteln im Vergleich zwischen oraler und intravenöser Dosierung anhand einer Zwillingsstudie / Importance of hereditary factors for the variability of pharmacokinetics of drugs in comparison between oral and intravenous dosing in a twin studyBecker, Stefanie 29 September 2020 (has links)
No description available.
|
25 |
Influence du système endocrinien de la vitamine D dans la régulation de la vitamine D3 25-hydroxylase CYP27A hépatique et intestinale chez l'humain et le ratTheodoropoulos, Catherine January 2002 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
26 |
Influence du système endocrinien de la vitamine D dans la régulation de la vitamine D3 25-hydroxylase CYP27A hépatique et intestinale chez l'humain et le ratTheodoropoulos, Catherine January 2002 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
27 |
Impact of selected herbal products on intestinal epithelial permeation and metabolism of indinavir / Carlemi CalitzCalitz, Carlemi January 2014 (has links)
Patients on anti-retroviral (ARV) drug treatment are sometimes simultaneously taking other
prescribed drugs and/or over-the-counter drugs and/or herbal remedies. Pharmacokinetic
drug-drug or herb-drug interactions can occur in these patients, which might be synergistic
or antagonistic in nature leading to increased or decreased bioavailability of the ARV.
Consequences of bioavailability changes may either be adverse effects due to increased
plasma levels, or lack of pharmacological responses due to decreased plasma levels. The
aim of this study is to determine if pharmacokinetic interactions exist between selected
commercially available herbal products, namely Linctagon Forte®, Viral Choice® and
Canova® and the ARV, indinavir, in terms of transport and metabolism in cell culture models.
Bi-directional transport of indinavir was evaluated across Caco-2 cell monolayers in four
experimental groups, namely indinavir alone (200 μM, negative control group), indinavir in
combination with Linctagon Forte®, indinavir in combination with Viral Choice® and indinavir
in combination with Canova® at three different concentrations. Verapamil (100 μM), a known
P-gp inhibitor, was combined with indinavir in the positive control group. Samples obtained
from the transport studies were analysed by means of a validated high performance liquid
chromatography (HPLC) method. The apparent permeability coefficient (Papp) values were
calculated from the transport results in both directions and the efflux ratio (ER) values were
calculated from these Papp values. The metabolism of indinavir was determined in LS180
cells in the same groups as mentioned for the transport study but with ketoconazole (40 μM),
a known CYP3A4 inhibitor, as the positive control group. Indinavir and its predominant
metabolite (M6) were analysed in the metabolism samples by means of liquid
chromatography linked to mass spectroscopy (LC/MS/MS) to determine the effect of the
herbal products on the biotransformation of indinavir.
The BL-AP transport of indinavir increased in a concentration dependent way in the
presence of Linctagon Forte® and Viral Choice® when compared to that of indinavir alone
(control group). Canova® only slightly affected the efflux of indinavir compared to that of the
control group. Noticeable increases in the efflux ratio values of indinavir were found for
Linctagon Forte® and Viral Choice®, whilst the effect of Canova® on the efflux ratio value was
negligible.
There was a pronounced inhibition of the metabolism of indinavir in LS180 cells over the
entire concentration range for all the herbal products investigated in this study. These in
vitro pharmacokinetic interactions indicate the selected herbal products may affect indinavir’s bioavailability, but the clinical significance needs to be confirmed with in vivo studies before
final conclusions can be made. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2015
|
28 |
Impact of selected herbal products on intestinal epithelial permeation and metabolism of indinavir / Carlemi CalitzCalitz, Carlemi January 2014 (has links)
Patients on anti-retroviral (ARV) drug treatment are sometimes simultaneously taking other
prescribed drugs and/or over-the-counter drugs and/or herbal remedies. Pharmacokinetic
drug-drug or herb-drug interactions can occur in these patients, which might be synergistic
or antagonistic in nature leading to increased or decreased bioavailability of the ARV.
Consequences of bioavailability changes may either be adverse effects due to increased
plasma levels, or lack of pharmacological responses due to decreased plasma levels. The
aim of this study is to determine if pharmacokinetic interactions exist between selected
commercially available herbal products, namely Linctagon Forte®, Viral Choice® and
Canova® and the ARV, indinavir, in terms of transport and metabolism in cell culture models.
Bi-directional transport of indinavir was evaluated across Caco-2 cell monolayers in four
experimental groups, namely indinavir alone (200 μM, negative control group), indinavir in
combination with Linctagon Forte®, indinavir in combination with Viral Choice® and indinavir
in combination with Canova® at three different concentrations. Verapamil (100 μM), a known
P-gp inhibitor, was combined with indinavir in the positive control group. Samples obtained
from the transport studies were analysed by means of a validated high performance liquid
chromatography (HPLC) method. The apparent permeability coefficient (Papp) values were
calculated from the transport results in both directions and the efflux ratio (ER) values were
calculated from these Papp values. The metabolism of indinavir was determined in LS180
cells in the same groups as mentioned for the transport study but with ketoconazole (40 μM),
a known CYP3A4 inhibitor, as the positive control group. Indinavir and its predominant
metabolite (M6) were analysed in the metabolism samples by means of liquid
chromatography linked to mass spectroscopy (LC/MS/MS) to determine the effect of the
herbal products on the biotransformation of indinavir.
The BL-AP transport of indinavir increased in a concentration dependent way in the
presence of Linctagon Forte® and Viral Choice® when compared to that of indinavir alone
(control group). Canova® only slightly affected the efflux of indinavir compared to that of the
control group. Noticeable increases in the efflux ratio values of indinavir were found for
Linctagon Forte® and Viral Choice®, whilst the effect of Canova® on the efflux ratio value was
negligible.
There was a pronounced inhibition of the metabolism of indinavir in LS180 cells over the
entire concentration range for all the herbal products investigated in this study. These in
vitro pharmacokinetic interactions indicate the selected herbal products may affect indinavir’s bioavailability, but the clinical significance needs to be confirmed with in vivo studies before
final conclusions can be made. / MSc (Pharmaceutics), North-West University, Potchefstroom Campus, 2015
|
29 |
Vitamin E metabolism in humansClarke, Michael William January 2008 (has links)
[Truncated abstract] Vitamin E is comprised of a family of tocopherols (TOH) and tocotrienols. The most studied of these is [alpha]-tocopherol ([alpha]-TOH), as this form is retained within the body and any deficiency of vitamin E is corrected with this supplement. [alpha]-TOH is a lipid-soluble antioxidant required for the preservation of cell membranes and potentially acts as a defense against oxidative stress. Individuals who have a primary vitamin E deficiency such as low birth weight infants, secondary vitamin E deficiency due to fat malabsorption such as in abetalipoproteinaemia, or a genetic defect in TOH transport require supplementation. There is debate as to whether vitamin E supplementation in other patient groups is required. Vitamin E supplementation has been recommended for persons with FHBL, a rare disorder of lipoprotein metabolism that leads to low serum [alpha]-TOH and decreased LDL cholesterol and apolipoprotein B concentrations. We examined the effect of truncated apoB variants on vitamin E metabolism and oxidative stress in persons with heterozygous FHBL. We used HPLC with electrochemical detection to measure [alpha]- and [gamma]-TOH in serum, erythrocytes, and platelets, and GC-MS to measure urinary F2-isoprostanes and TOH metabolites as markers of oxidative stress and TOH intake, respectively. Erythrocyte [alpha]-TOH was decreased, but we observed no differences in lipid-adjusted serum TOHs, erythrocyte [gamma]-TOH, platelet [alpha]- or [gamma]-TOH, urinary F2-isoprostanes, or TOH metabolites. Taken together, our findings do not support the recommendation that persons with heterozygous FHBL should receive vitamin E supplementation. ... Sesame lignans are natural components of sesame seed oil and there is evidence that these lignans can inhibit CYP450 enzymes, in particular, those responsible for vitamin E metabolism. We hypothesised that sesame seed ingestion would increase serum [gamma]-TOH, lower plasma lipids and inhibit platelet function in human subjects with at least one cardiovascular risk factor. We used HPLC with electrochemical detection to measure [alpha]- and -TOH in serum and GC-MS to measure F2-isoprostanes and TOH metabolites as markers of oxidative stress and TOH intake, respectively. We used high-sensitive C-reactive protein as a measure of systemic inflammation. Platelet function was assessed using the PFA-100 platelet aggregation assay. Although serum [gamma]-TOH increased by 17%, we observed no effect on lipid metabolism, markers of inflammation, oxidative stress or platelet function following treatment with ~25 g/day sesame seeds for five weeks. Our findings challenge the hypothesis that sesame seed ingestion provides beneficial cardiovascular effects. In summary, we have studied the metabolism and transport of both [alpha]- and [gamma]-TOH in humans to evaluate the requirements for supplementation and the effects of vitamin E on platelet function and CYP3A4 activity. Specialised techniques using HPLC were developed to measure serum and cellular TOH concentrations both in supplemented and un-supplemented individuals. We also used GCMS to provide a sensitive, accurate assessment of TOH metabolites and midazolam pharmacokinetics in humans after vitamin E supplementation. We have examined the role vitamin E has on important biochemical endpoints, with emphasis on the implications for TOH supplementation in subjects at risk of CVD.
|
30 |
Intestinal Permeability and Presystemic Extraction of Fexofenadine and R/S-verapamilTannergren, Christer January 2004 (has links)
<p>The main objective of this thesis was to investigate the in vivo relevance of membrane transporters and cytochrome P450 (CYP) 3A4-mediated metabolism in the intestine and liver for the bioavailability of drugs in humans after oral administration.</p><p>In the first part of the thesis, the main transport mechanisms involved in the intestinal absorption and bioavailability were investigated for fexofenadine, a minimally metabolized drug, which is a substrate for P-glycoprotein (P-gp) and members of organic anion transporting polypeptide (OATP) family. Jejunal perfusion studies revealed that co-perfusion with verapamil increased the bioavailability of fexofenadine by decreasing the first-pass liver extraction as the low intestinal permeability was unchanged by the transport inhibitors studied. The mechanism behind the interaction probably involves inhibition of OATP-mediated sinusoidal uptake and/or P-gp-mediated canalicular secretion of fexofenadine. Results from the Caco-2 model supported that the intestinal absorption of fexofenadine is mainly determined by the low passive permeability of the drug, even though fexofenadine clearly is a P-gp substrate. </p><p>In the second part of the thesis, the effect of repeated oral administration of the P-gp and CYP3A4 inducer St. John’s wort on the in vivo intestinal permeability and presystemic metabolism of the dual P-gp and CYP3A4 substrate verapamil was investigated in a jejunal perfusion study. St. John’s wort decreased the bioavailability of the enantiomers of verapamil by inducing the CYP3A4-mediated presystemic metabolism, probably mainly in the gut. It was also concluded that induction of efflux transporters, such as P-gp, does not affect the intestinal transport or the gut wall extraction of high permeability substrates like verapamil. Data from Caco-2 cells with induced CYP3A4-activity supported these findings. The plasma levels of the enantiomers of norverapamil also decreased despite an increased formation, which was attributed to induction of CYP3A4 and/or other metabolic routes. </p>
|
Page generated in 0.0459 seconds