• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 15
  • 3
  • Tagged with
  • 57
  • 20
  • 18
  • 16
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Inhibition biologique de la dénitrification (BDI) par des métabolites secondaires du complexe d’espèces Fallopia spp. / Biological denitrification inhibition (BDI) by secondary metabolites of the complex species Fallopia spp.

Bardon, Clément 02 December 2014 (has links)
L'azote est souvent considéré comme le premier facteur limitant la croissance des plantes terrestres (Vitousek & Howarth, 1991a; LeBauer & Treseder, 2008). Ainsi, les études sur le contrôle du fonctionnement microbien et la sélection des microorganismes des sols par les plantes se sont principalement intéressées au cycle de l'azote (N) (Chapman et al., 2006). Certaines plantes peuvent inhiber la nitrification ou la minéralisation de l'azote des sols par la libération de métabolites secondaires. Cependant, bien que la dénitrification soit considérée comme une voie majeure de perte d'azote des sols (25-90%) (van der Salm et al., 2007; Radersma & Smit, 2011), l'inhibition de la dénitrification par les métabolites secondaires de plantes n'a jamais été démontrée. Or il a été constaté à de nombreuses reprises qu'aux voisinages de certaines plantes la dénitrification du sol était réduite. C'est le cas du complexe d'espèces Fallopia spp. pour lequel les principaux facteurs connus pour influencer ce processus ne pouvaient expliquer cette réduction (Dassonville et al., 2011). Nos résultats démontrent pour la 1ière fois que les plantes (ici Fallopia) peuvent inhiber la dénitrification par la libération de procyanidines de type B qui induisent en anaérobiose des modifications physiologiques chez les dénitrifiants. Selon les sols, les communautés peuvent être plus ou moins sensibles notamment en fonction de leur exposition précédente à Fallopia spp.. Nos résultats apportent de nouvelles connaissances sur les interactions entre plantes et microorganismes et améliorent notre compréhension sur la capacité des plantes à modeler le fonctionnement microbien des sols / Nitrogen is often considered as the first limiting factor of plant growth (Vitousek & Howarth, 1991a; LeBauer & Treseder, 2008). Thus studies on plant-driven microbial functioning and selection by secondary metabolites have mostly focused on the effect of plant on the nitrogen (N) cycle (Chapman et al., 2006). Some plants can inhibit the nitrification and the nitrogen mineralization processes in soils through the release of secondary metabolites (Subbarao et al., 2009; Dietz et al., 2013; Heumann et al., 2013). However, while denitrification is considered as a major way of N losses in soils (25-90%) (van der Salm et al., 2007; Radersma & Smit, 2011), the denitrification inhibition by plant secondary metabolites was never demonstrated. However, it has been observed several times that the denitrification in soils near some species was reduced. The invasive complex species Fallopia spp. was shown to reduce denitrification in soils without affecting principal factors known to control this process (Dassonville et al 2011). Our, results demonstrate for the first time, that plants (here Fallopia spp.) can inhibit denitrification through the release of B-type procyanidins that induce physiological changes in denitrifying bacteria under anaerobic conditions. These compounds affect specifically the membrane-bound NO3-reductase through conformational changes. Less sensitive soils denitrifying communities may be selected in soils previously exposed to Fallopia spp. Our finding provides new insight into plant-soil interactions and improves our understanding of plants abilities to shape microbial soil functioning
42

Ecologie des bactéries N2O réductrices dans les sols agricoles / Ecology of N2O reducing bacteria in arable soils

Domeignoz Horta, Luiz A. 16 December 2016 (has links)
Le protoxyde d’azote (N2O) est un gaz à effet de serre (GES) important et la principale substance attaquant la couche d'ozone. Les sols agricoles sont la principale source anthropique de ce GES. La concentration de N2O dans l'atmosphère est en constante augmentation, mais nous manquons de connaissances sur les facteurs contrôlant sa production et sa consommation dans les sols. La réduction du N2O en N2 par des microorganismes porteurs du gène codant pour la N2O réductase (nosZ) est le seul processus biologique capable de réduire ce GES. Des études récentes ont mis en évidence un clade précédemment inconnu de réducteurs du N2O qui interfère de manière significative avec la quantité de N2O produite dans les sols. Cette thèse a cherché à mieux comprendre l'écologie des réducteurs du N2O dans les sols agricoles.Une combinaison d'expériences d'incubation en laboratoire mais aussi d’expériences en plein champs a été utilisée pour essayer de mieux comprendre la production de N2O dans le sol, en analysant l’influence conjointe des producteurs et réducteurs de N2O. Nous avons aussi évalué l’impact des pratiques agricoles et leurs potentiels à modifier ces communautés microbiennes. Suite aux essais réalisés en laboratoire, nous avons montré que l'ajout d'une souche non-dénitrifiante Dyadobacter fermentans,possédant la N2O réductase NosZII, permettait de réduire la production de N2O dans 1/3 des sols testés. Certains sols sont même devenus consommateurs de N2O suite à l'ajout de la souche nosZII. Cette expérience a démontré la contribution des bactéries nosZII non-dénitrifiantes dans la consommation de N2O dans le sol.D’autre part, nos analyses en contexte agricole ont montré que les pratiques agricoles testées ont peu d’influence sur les communautés microbiennes considérées, les exceptions étant le travail du sol (labour), et le système de culture (annuel ou pérenne). L’intensifiant du travail du sol induit une augmentation de la diversité de nosZII. Nous observons le même phénomène dans le système de culture annuel comparé au système de culture pérenne. D’autres résultats nous permettent aussi d’affirmer que le clade récemment identifié de réducteurs du N2O est plus sensible aux variables environnementales que le clade précédemment connu (nosZI). Les variations de propriétés du sol, notamment pH et C:N structurent les communautés microbiennes appartenant à ces 2 clades indiquant une spécialisation de niche pour chacun de ces deux clades de N2O-réducteurs.Pour mieux comprendre les relations entre les communautés microbiennes et les processus impliqués, nous avons évalué les activités potentielles de dénitrification et de nitrification, et les émissions de N2O in situ. La production potentielle de N2O et l'activité potentielle de dénitrification ont été utilisées pour calculer le ratio de production de N2O (N2O:N2). La diversité du clade nosZII est négativement corrélée au ratio N2O:N2, et explique à elle seule la plus grande part de variance observée du ratio N2O:N2. Les variations de production potentielle de N2O et d'activité potentielle de dénitrification sont elles expliquées principalement par les variations de propriétés du sol. Afin de mieux évaluer la contribution des différents facteurs édaphiques et microbiologiques aux variations d’émission in situ de N2O, 70000 mesures ont été subdivisées en différentes gammes d’émission de N2O, d‘émissions dites de base à des émissions élevées. Fait intéressant, les variations d’émissions in situ de N2O dites de base sont seulement liées à des variations du pH du sol, alors que les variations d’émissions dites élevées sont également fortement associées aux variations de diversité des communautés microbiennes. Parmi les variables microbiennes importantes, nous avons constaté que la diversité des nosZII est négativement liée aux émissions de N2O in situ dites élevées.En conclusion, nos résultats mettent en évidence l’importance du clade nosZII pour le cycle du N2O dans le sol (...). / Nitrous oxide (N2O) is an important greenhouse gas (GHG) and the main ozone depleting substance. Agricultural soils are the main anthropogenic-induced source of this GHG. The concentration of N2O in the atmosphere is steadily increasing, but we still lack knowledge on the factors controlling its production and consumption in soils. The reduction of N2O to N2 by microorganisms harboring the N2O reductase gene (nosZ) is the only known biological process able to consume this GHG. Recent studies revealed a previously unknown clade of N2O-reducers which was shown to be important to the N2O sink capacity of soils. This thesis seeks to gain a greater understanding on the ecology of N2O-reducers in agricultural soils. A combination of laboratory incubation and field experiments were used to gain knowledge on the importance of N2O-producers and N2O-reducers to the soil N2O production. Additionally, the potential of agricultural practices to modify those microbial communities were assessed.We showed experimentally, in laboratory incubations, that the addition of a non-denitrifying strain Dyadobacter fermentans, which possesses the previously unaccounted N2O reductase NosZII, reduced N2O production in 1/3 of the tested soils. Remarkably, after addition of the nosZII strain, some soils became a N2O sink, as negative rates were recorded. This experiment provided unambiguous evidence that the overlooked non-denitrifying nosZII bacteria can contribute to N2O consumption in soil.Our evaluation of agricultural field experiments showed limited impact of agricultural practices on the microbial communities except for tillage management, and differences observed between an annual and a perennial cropping system. Increasing tillage management enhanced nosZII diversity. Higher diversity of the nosZII clade was also observed in the annual cropping system than in the perennial cropping system. Overall, the recently identified clade of N2O-reducers was more sensitive to environmental variables than the previously known clade (nosZI). The community structure of these two groups was explained by common and uncommon soil properties suggesting niche specialization between the two N2O-reducers.In an attempt to understand the relationship between the microbial communities and process rates, we assessed the potential denitrification and nitrification rates, and in situ N2O emissions. Potential N2O production and potential denitrification activity were used to calculate the denitrification end-product ratio. The diversity of nosZII was negatively related to the N2O:N2 ratio and explained the highest fraction of its variation (26%), while the potential N2O production and potential denitrification activity were mainly explained by the soil properties. To better evaluate the contribution of different factors to the in situ emissions, more than 70000 N2O measurements were subdivided into different ranges, from low to high rates. Interestingly, the low range of in situ N2O emissions was only related to soil pH, while the high ranges were also strongly related to the microbial communities. This result suggests that the “base-line” N2O emissions might be more regulated by soil edaphic conditions than by microorganisms, the lasts being more important for the high emissions ranges. Among the significant microbial variables, we found that the diversity of nosZII was negatively related to the high ranges of in situ N2O emissions.In conclusion, our results highlight the relevance of the second clade of N2O-reducers to the fate of N2O in soil. Our results also suggest niche differentiation between the two N2O-reducing clades with nosZII being more responsive to environmental variables. Agricultural practices showed limited impact on the two guilds. Further research is needed to test the niche specialization between the two groups, to disentangle their controlling factors, and to evaluate their potential for N2O mitigation.
43

L'influence de la méiofaune sur le fonctionnement du biofilm lotique en relation avec la qualité de l'eau / The influence of meiofauna on river biofilm functioning in relation to water quality

Liu, Yang 19 November 2015 (has links)
Le rôle de la méiofaune sur le fonctionnement des biofilms lotiques a été examiné par l'étude de son effet potentiel sur la capacité de consommation de l'azote des biofilms, au cours de quatre expérimentations. Les deux premières (Chapitres 2 et 3) concernent les biofilms épilithiques (phototrophes) tandis que les deux autres ont porté sur les biofilms (hétérotrophes) de la zone hyporhéique. Les biofilms sont soumis (1) à différents niveaux de densités (méiofaune) et à un enrichissement en nutriments ou (2) à différents niveaux de diversité (biofilm/méiofaune/macrofaune). Une partie des microcosmes présentant chaque niveau de diversité a été exposée à l'effet d'un herbicide, le diuron. Dans l'ensemble, la méiofaune associée aux biofilms des microcosmes était largement dominée par les rotifères. Les résultats basés sur les biofilms phototrophes montrent que les rotifères peuvent répondre à court terme, à un enrichissement en N-NO3 par une augmentation significative de leur densité et biomasse. De plus, le taux de consommation de N-NO3 est apparu significativement plus élevé dans les microcosmes dont les densités de méiofaune étaient les plus élevées. Cet effet positif de la méiofaune sur la consommation de N- NO3 par les biofilms a été retrouvé dans l'étude basée sur le biofilm hyporhéique pour les microcosmes non soumis aux effets du diuron. Dans l'ensemble, ce travail met donc en évidence le rôle significatif que peut avoir la méiofaune dans les processus de consommation de l'azote par les biofilms lotiques. De plus, les résultats suggèrent fortement que les invertébrés interagissent avec les micro-organismes impliqués dans les processus de réduction des concentrations en azote, dans le biofilm phototrophe comme dans le biofilm hyporhéique. Enfin, l'exposition à l'herbicide a engendré une modification significative du taux de consommation de N-NO3 dans les microcosmes hyporhéiques. Cependant, la comparaison du taux de consommation moyen de N-NO3 entre les traitements exposés à l'herbicide et ceux non exposés, a montré que la présence des invertébrés (méiofaune + macrobenthos) a significativement réduit l'effet du diuron sur ces processus. Cette étude met en exergue le rôle potentiellement important des interactions micro- organismes - invertébrés dans (1) le cycle de l'azote des biofilms et donc, dans les fonctions relatives à leur contribution aux processus " d'auto-épuration " des cours d'eau, et (2), dans la capacité de résistance des écosystèmes hyporhéiques face aux perturbations chimiques. / The role of meiofauna on the functioning of riverine biofilms was examined by studying their potential effect on nitrogen consumption capacity of biofilms in four experiments (Chapters 2 and 3: epilithic phototrophic biofilms; Chapters 4 and 5: heterotrophic biofilms of hyporheic zone). Biofilms are subjected to (1) different levels of densities (meiofauna) and nutrient enrichment or (2) different levels of diversity (biofilm/meiofauna/macrofauna). A part of the microcosms of each level of diversity was exposed to the effect of an herbicide, diuron. Overall, biofilm-associated meiofauna in microcosms was dominated by rotifers. Results in phototrophic biofilms showed that the response of rotifers to short-term nutrient enrichment was significant increases in their density and biomass. In addition, N-NO3 uptake rates appeared significantly higher in microcosms with highest meiofauna densities. This positive effect of meiofauna on biofilm N-NO3 uptake was also found in hyporheic biofilm microcosms, but not under the effect of diuron. Therefore, this thesis highlights that meiofauna can have a significant role in nitrogen consumption processes by lotic biofilms. In addition, the results strongly suggest that invertebrates interact with microorganisms involved in the reduction processes of nitrogen concentrations in the phototrophic biofilm as well as the hyporheic biofilm. Finally, the herbicide exposure resulted in a significant modification of N-NO3 uptake rate in hyporheic microcosms. However, the comparison of the average N- NO3 uptake rate between treatments exposed to herbicide and those unexposed, showed that the presence of invertebrates (meiofauna + macrofauna) significantly reduced the effect of diuron on these processes. This study highlights the potentially important role of microorganism-invertebrate interactions (1) in the nitrogen cycle of biofilms and thus functions related to their contribution to the "self-purification" process in streams, and (2) in resilient capacity of the hyporheic ecosystem to chemical perturbations.
44

Anaerobic respiration diversification in Agrobacterium fabrum C58 / Diversification de l'adaptation à la vie anaérobie chez Agrobacterium fabrum C58

Lecomte, Solène 18 November 2019 (has links)
La respiration anaérobie peut être un trait essentiel dans le mode de vie, la colonisation de l'environnement et la survie. Jusqu'à présent, la seule respiration anaérobie confirmée chez Agrobacterium spp. est la dénitrification. De façon intéressante, cette voie est inégalement répandue chez les agrobactéries. Ces observations m'ont amené à mon hypothèse, à savoir la respiration anaérobie et notamment la dénitrification pourraient expliquer la coexistence d'agrobactéries et leur distribution dans des niches spécifiques de la rhizosphère. Ma thèse visait à explorer les stratégies de respiration anaérobie d’Agrobacterium spp. et de les relier à l'adaptation de niche écologiques différentes. Les objectifs de ma thèse étaient (1) de caractériser tous les gènes impliqués dans la dénitrification chez A. fabrum C58 in vitro, (2) d'explorer les gènes de la dénitrification nécessaires à la colonisation des racines du maïs et (3) de découvrir de nouvelles respirations anaérobies pendant la colonisation racinaire du maïs (Figure 16). Réaliser des mutants et les tester dans des conditions particulières est le moyen classique de déterminer l'implication d'un gène dans une voie spécifique. Cependant, cette méthode implique une vision à priori et des connaissances solides sur les gènes cibles et ne peut pas être appliquée à toutes les situations. Nous avons alors dû développer une méthode plus adaptée pour identifier les gènes essentiels impliqués dans la croissance dans des conditions anaérobies spécifiques. - Gènes de dénitrification chez A. fabrum C58 in vitro. Pour compléter la voie de dénitrification chez A. fabrum C58 et identifier tous les gènes et régulateurs impliqués dans la dénitrification, nous avons adopté deux stratégies : Premièrement, une vision à priori pour (1) identifier la nitrate réductase impliquée dans la première étape de la dénitrification et (2) valider le rôle d'un ARN non codant dans le contrôle de la dénitrification. Pour ce faire, nous avons construit un mutant napA de A. fabrum C58 et un mutant de l'ARN non codant NopR et nous avons évalué leur croissance et leur capacité à produire du N2O dans des conditions anoxiques. Deuxièmement, pour identifier tous les gènes impliqués dans la dénitrification, nous avons construit une banque de transposons mutants de C58 et testé sa croissance dans des conditions de dénitrification in vitro en présence de nitrate ou de nitrite. - Rôle des gènes de la denitrification de A. fabrum C58 dans la colonisation racinaire du maïs. Il est bien connu que le séquençage de transposons (Tn-Seq) est une méthode très puissante pour déterminer les gènes nécessaires à la croissance bactérienne en présence de leur hôte. Pour déterminer les gènes de dénitrification impliqués dans la colonisation des racines en anoxie, nous avons utilisé la banque construite chez C58 et l’avons inoculée sur les plants de maï cultivées sur un sol fertile et cultivées dans des conditions inondées mimant des conditions anaérobies. Le séquençage des cellules d ‘A. fabrum C58 récupérées mettra en évidence les gènes impliqués dans la colonisation anaérobie de cette niche spécifique. - Découverte de nouvelles voies de respiration anaérobie chez A. fabrum C58. Pour découvrir de nouvelles voies de respiration anaérobie, nous avons mis en place des tests de croissance de C58 dans des conditions anoxiques en présence de sources de C et de N en tant qu'accepteurs terminaux d'électrons. De façon interéssante, en cultivant des souches WT et mutée dans le gène napA au contact de la racine de maïs dans des conditions anoxiques (chapitre 1), nous avons montré une croissance des deux souches. Ce résultats suggère que les exsudats de racine servent d'accepteurs d'électrons terminaux pour la croissance anaérobie de C58. Pour déterminer quels composés exsudés du maïs peuvent servir de TEA, les principaux métabolites ont été identifiés par HPLC et certains ont été testés en tant que TEA dans des conditions anoxiques / Anaerobic respiration may be an essential trait in lifestyle, environment colonization and survival. Until now, the only confirmed anaerobic respiration in Agrobacterium spp. is denitrification. Interestingly, this pathway is unequally widespread among Agrobacteria. These observations led me to my hypothesis which is anaerobic respiration and notably denitrification could explain the coexistence of Agrobacteria and their distribution in specific niches in the rhizosphere. My thesis was undertaken to explore the anaerobic respiration strategies of Agrobacterium spp. and to relate them to niche adaptation. The objectives of my thesis were to (1) characterize all the genes involved in denitrification in A. fabrum C58 in vitro, (2) explore the genes of denitrification that are needed during maize root colonization and (3) discover new anaerobic respirations that occur during maize root colonization (Figure 16). Mutational analysis is the classic way to determine the involvement of a gene in specific pathway. However, this method implies an a priori view and solid knowledge on target genes and cannot be applied for every situation. We have to develop a more adapted method to identify essential genes involved in growth in specific anaerobic conditions. - Denitrification genes in A. fabrum C58 in vitro. To complete denitrification pathway in A. fabrum C58 and identify all the genes and regulators involved in the denitrification function, we adopted two strategies: Firstly, an a priori view to (1) identify the nitrate reductase involved in the first step of denitrification and (2) validate the role of a non-coding RNA in denitrification control. To do so, we constructed a mutant of napA of A. fabrum C58 and a mutant of the non-coding RNA NopR and we evaluated their growth and capacity to produce N2O under anoxic conditions. Secondly, to identify all the genes involved in denitrification, we constructed a mutant transposon library of C58 and tested its growth under denitrification conditions in vitro in the presence of either nitrate or nitrite. - Role of A. fabrum C58 denitrifying genes in the root colonization of maize. It is well known that Transposon-sequencing (Tn-Seq) is a very powerful method to determine genes required for bacterial growth in the presence of their host. To determine denitrifying genes involved in root colonization under anaerobic conditions, we used the library constructed in C58 and performed in planta assays. The mutant library was inoculated on maize plants grown on fertile-ground and cultured under flooded conditions miming anaerobic conditions. Sequencing the recovered A. fabrum C58 cells will evidence the genes involved in this anaerobically specific niche colonization. - Discovery of new anaerobic respiration pathways in A. fabrum C58. To discover new anaerobic respiration pathways, we set-up growth assays of C58 under anoxic conditions in the presence C and N sources as terminal electrons acceptors. Interestingly, by culturing WT and NapA-deficient strains in contact with maize root under anoxic conditions (Chapter 1), we showed growth of both strains, suggesting that root exudates serve as terminal electrons acceptors for anaerobic growth of C58. To determine which maize exuded compounds can serve as TEAs, primary metabolites were identified by HPLC and some were tested as TEAs under the set-up conditions
45

Modélisation des pertes de charge en biofiltration

Perron, Jean-Michel 14 June 2023 (has links)
Titre de l'écran-titre (visionné le 5 juin 2023) / Les procédés d'épuration par biofiltration sont très compacts et très performants pour assurer le traitement du carbone et de l'azote. Pour conserver de bonnes performances épuratoires, les biofiltres doivent être lavés régulièrement. Le déclenchement des lavages est dicté par la perte de charge à l'intérieur du biofiltre. Cette dernière augmente durant un cycle de filtration et lorsqu'elle dépasse un seuil fixé, un lavage est déclenché. Une bonne planification du lavage des biofiltres est essentielle pour réduire les risques de débordement d'eau usée lors de fortes précipitations, pour réduire le risque de colmatage et pour réduire les coûts d'opération. Les modèles de biofiltration actuels simulent avec précision et robustesse la qualité d'eau (Vigne 2007; Bernier 2014; Zhu 2020), mais simulent difficilement le comportement des pertes de charge sur plusieurs mois. Ce projet de recherche compare le comportement des pertes de charge simulées à partir de trois sous-modèles (Carman 1937; Ergun 1952; Bernier 2014) de perte de charge. Les modèles de perte de charge de Carman (1937) et d'Ergun (1952) sont considérés, dans le cadre de ce projet de recherche, comme des simplifications du modèle de Bernier (2014). Les deux sous-modèles simplifiés ont été intégrés au modèle de biofiltration de Bernier (2014). Ils ont été calibrés et validés en suivant le protocole de Vigne (2007) et de Rittmann et collab. (2018) avec des jeux de données de l'étage de post-dénitrification sur méthanol de Seine-Centre, une des stations d'épuration de l'agglomération parisienne. Les jeux de données regroupent des mesures horaires du débit, des NOx et des pressions ainsi que des mesures récoltées sur des échantillons composites journaliers (DCO, DBO₅ PO₄³⁻, MES et NH₄⁺). Mis à part pour la densité sèche du biofilm et pour la porosité du média, la calibration des trois modèles est identique. Le sous-modèle de perte de charge de Bernier (2014) est calibré avec une densité sèche de biofilm de 100 kg[indice MES]/m³ et avec une porosité du média de 0.34 alors que les sous-modèles d'Ergun (1952) et de Carman (1937) sont calibrés avec une densité sèche de biofilm de 47 kg[indice MES]/m³ et avec une porosité du média de 0.3. Malgré cette différence, les trois sous-modèles simulent précisément la perte de charge, avec une erreur moyenne de 0.1 mètre d'eau. Durant la validation, les trois sous-modèles calibrés simulent avec précision la perte de charge initiale, mais sous-estiment l'encrassement du biofiltre avec une erreur moyenne de 0.4 mètre d'eau. Les erreurs des simulations d'encrassement durant la validation du modèle peuvent être diminuées en modifiant uniquement la densité sèche du biofilm dans les trois sous-modèles (de 100 à 80 kg[indice MES]/m³ dans le modèle de Bernier (2014) et de 47 à 39 kg[indice MES]/m³ pour les autres). Une fois bien calibrés, les trois calculs offrent des précisions similaires, mais ils ont les mêmes problèmes de robustesse durant la validation. Même si les biofiltres dénitrifiants sont l'une des configurations les plus simples pour modéliser l'encrassement des biofiltres et même si Bernier (2014) a proposé un des modèles de biofiltration les plus performants, les modèles actuels ont un problème de robustesse. Les trois sous-modèles de perte de charge comparés simulent avec précision l'encrassement sur quelques semaines, mais ils ont tous besoin d'être recalibrés pour simuler l'encrassement sur plusieurs mois. La littérature disponible met l'accent sur l'équation de perte de charge pour améliorer les sous-modèles de perte de charge, mais cette recherche montre que le problème de robustesse est lié à l'hypothèse d'un biofilm avec une densité constante. La prochaine étape pour améliorer les modèles de perte de charge sera de modéliser comment la densité du biofilm change dans le temps et selon les conditions d'opérations. Un modèle de biofilm à densité variable pourrait être lié aux substances polymériques extracellulaires (EPS). Le Bihan et Lessard (2000) ont montré qu'une production excessive des EPS dans le biofilm induit un encrassement prématuré des biofiltres et Pechaud et collab. (2012) a corrélé la présence d'EPS avec les propriétés physiques du biofilm. / Biofilters are very compact processes and very efficient for carbon and nitrogen removal. To maintain their treatment capacity, biofilters needs to be regularly backwashed. Generally, theses backwashes are triggered when a maximum headloss through the filter is reached. A good planning of these backwash events is fundamental to avoid a bypass of untreated wastewater during storm events, to avoid permanent clogging of the filter and to minimise operational costs. Mathematical models are an essential tool to improve treatment process performance. Actual biofiltration models can simulate with reliability and robustness effluent water quality (Vigne 2007; Zhu 2020) but have difficulties to simulate headloss behaviour (Bernier, 2014). This paper explores possibilities to improve clogging predictions in biofiltration models by using data from a full-scale biofilter train operated by SIAAP in Paris region, France. The behaviour of three traditional headloss models were compared and analysed to evaluate the importance of different submodels: Carman (1937), Ergun (1952) and Bernier (2014). Datasets were collected at the denitrification biofiltration process from Seine-Centre, one of the Paris WWTPs. Flowrate, methanol injection rate, nitrate and pressure were measured on an hourly basis and composite samples were collected on a daily basis and analysed for COD, BOD₅, PO₄⁺, TSS and NH₄⁺ at both influent and effluent of the biofilter. The database gathers data from July to November 2020. The model used to simulate post-denitrification process proposed by Bernier (2014) is the more complex one, the two others being considered simplification of Bernier's. The three models were calibrated and validated following the biofilm model calibration guidelines of Vigne (2007) and Rittmann et collab. (2018). It is the first time that the most common headloss equations are compared and successively implemented in a biofiltration model. Except for the biofilm density and the initial media porosity, the models fit to the dataset are almost identical for each of the clogging sub-models. Bernier (2014) sub-model is calibrated with a biofilm density of 100kg[subscript TSS]/m³ and a media initial porosity of 0.34 whereas Ergun (1952) and Carman (1937) equation are calibrated with a biofilm density of 47 kg[subscript TSS]/m³ and a media initial porosity of 0.3. Despite this difference, they can precisely simulate the clogging with a mean error (ME) around 0.1 meter of water. Each sub-model can simulate precisely headloss when properly calibrate, but fails to simulate the reversible clogging process of validation datasets from different season. Each sub-model underestimates the clogging by an average of 0.4 meter of water. However, these validation problems can easily be fixed by reducing the biofilm density in the models (from 100 to 80 kg[subscript TSS]/m³ for the Bernier (2014) model and from 47 to 39 kg[subscript TSS]/m³ for the other models). Each clogging submodel has the same robustness problem: they can simulate clogging when properly calibrated, but fail to fit an independent dataset. The robustness problem appears to be related to the biofilm density. It is the only parameter that has to be changed to fit a different dataset. Even if post-denitrification biofilters are among the simplest configuration to model clogging and even if Bernier (2014) proposed one of the most comprehensive biofiltration model, the actual clogging sub-models still fails to simulate a validation dataset. This research project has not improved actual clogging sub-model, but it clearly points out what has to be done to improve them. The litterature focuses on the headloss equation itself to improve the model, but this research shows that actual robustness problems are probably caused by the assumption that biofilm density is constant. Past research on the modelling of biofilter clogging focused on the headloss equation itself. The study of three headloss submodels showed a similar model performance in terms of fit, while having the same robustness problem under validation. A model based on a biofilm with fixed density can properly simulate a month of operation but biofilm density seem to change over several months and it is thus important to consider whether the purpose of the model is to simulate biofilter operation for a longer period. At this moment, these sub-models seem unable to properly simulate a new dataset without changing the biofilm density. The next steps to improve headloss simulation will be to identify how biofilm density changes over time and what drives these changes. The answer could be related with Extracellular Polymeric Substance (EPS). Le Bihan et Lessard (2000) shows that excessive EPS production in the biofilm leads to premature clogging of biofilter and Pechaud et collab. (2012) correlates EPS with physical property of biofilm.
46

Évaluation de l'efficacité d'un biofiltre à macroalgues marines pour la réduction des nitrates et phosphates dans les bassins d'exposition du Biodôme de Montréal

Tremblay-Gratton, Anne 24 April 2018 (has links)
Au Biodôme de Montréal, la culture d'algues marines pourrait contribuer à l'amélioration de l'habitat aquatique et permettre à l'institution de combler ses exigences en termes de qualité de l'eau. En effet, les macroalgues peuvent diminuer les concentrations en nitrates et en phosphates générés par la décomposition des déchets métaboliques des animaux captifs puisqu'elles absorbent ses nutriments pour combler leurs besoins de croissance. L'objectif de ce projet est de contribuer au développement d'un biofiltre macroalgal adapté aux conditions d'opération de l'écosystème marin du Biodôme de Montréal. Les performances de bioremédiation de deux espèces d'algues marines indigènes, Palmaria palmata et Ulva lactuca, ont été évaluées sous des conditions expérimentales similaires à celles des bassins d'exposition, soit deux températures (5 et 10°C) et trois concentrations élevées en nitrate et phosphate (2 856:194 vs. 3 570:242 vs. 4 284:291 µM NO₃-:PO₄³⁻). Après six jours de culture, nos résultats démontrent 1) que les différentes concentrations en nutriments et la température n'influencent pas significativement la vitesse d'absorption des nutriments chez les deux espèces; 2) que la croissance de P. palmata n'est pas influencée par les traitements et 3) qu'U. lactuca démontre une croissance maximale à 10°C et à concentration intermédiaire. Le niveau élevé de saturation tissulaire en N, en lien avec les conditions environnementales nutritives du milieu de culture, limiterait l'absorption des nutriments et la croissance des macroalgues. Entre les deux espèces, U. lactuca semble une meilleure candidate que P. palmata dans nos conditions expérimentales, car elle démontre une vitesse d'absorption des nitrates trois fois supérieure (1,76 ± 0,59 vs. 0,65 ± 0,15 mg N MS⁻¹ d⁻¹), une vitesse d'absorption des phosphates deux fois supérieure (0,32 ± 0,21 vs. 0,14 ± 0,11 mg P DW⁻¹ d⁻¹) et un taux de croissance trois fois supérieur à P. palmata (2,12 ± 0,89 vs. 0,64 ± 0,18 % MF d⁻¹). Pour poursuivre le développement d'un biofiltre macroalgal efficace, l'accès à la lumière, le contrôle du pH et la disponibilité en microéléments devraient être optimisés
47

Les transformations microbiennes de l’azote dans les grandes rivières

Tall, Laure 02 1900 (has links)
Les rivières reçoivent de l'azote de leurs bassins versants et elles constituent les derniers sites de transformations des nutriments avant leur livraison aux zones côtières. Les transformations de l’azote inorganique dissous en azote gazeux sont très variables et peuvent avoir un impact à la fois sur l’eutrophisation des côtes et les émissions de gaz à effet de serre à l’échelle globale. Avec l’augmentation de la charge en azote d’origine anthropique vers les écosystèmes aquatiques, les modèles d’émissions de gaz à effet de serre prédisent une augmentation des émissions d’oxyde nitreux (N2O) dans les rivières. Les mesures directes de N2O dans le Lac Saint-Pierre (LSP), un élargissement du Fleuve Saint-Laurent (SLR) indiquent que bien qu’étant une source nette de N2O vers l'atmosphère, les flux de N2O dans LSP sont faibles comparés à ceux des autres grandes rivières et fleuves du monde. Les émissions varient saisonnièrement et inter-annuellement à cause des changements hydrologiques. Les ratios d’émissions N2O: N2 sont également influencés par l’hydrologie et de faibles ratios sont observés dans des conditions de débit d'eau plus élevée et de charge en N élevé. Dans une analyse effectuée sur plusieurs grandes rivières, la charge hydraulique des systèmes semble moduler la relation entre les flux de N2O annuels et les concentrations de nitrate dans les rivières. Dans SLR, des tapis de cyanobactéries colonisant les zones à faible concentration de nitrate sont une source nette d’azote grâce à leur capacité de fixer l’azote atmosphérique (N2). Étant donné que la fixation a lieu pendant le jour alors que les concentrations d'oxygène dans la colonne d'eau sont sursaturées, nous supposons que la fixation de l’azote est effectuée dans des micro-zones d’anoxie et/ou possiblement par des diazotrophes hétérotrophes. La fixation de N dans les tapis explique le remplacement de près de 33 % de la perte de N par dénitrification dans tout l'écosystème au cours de la période d'étude. Dans la portion du fleuve Hudson soumis à la marée, la dénitrification et la production de N2 est très variable selon le type de végétation. La dénitrification est associée à la dynamique en oxygène dissous particulière à chaque espèce durant la marée descendante. La production de N2 est extrêmement élevée dans les zones occupées par les plantes envahissantes à feuilles flottantes (Trapa natans) mais elle est négligeable dans la végétation indigène submergée. Une estimation de la production de N2 dans les lits de Trapa durant l’été, suggère que ces lits représentent une zone très active d’élimination de l’azote. En effet, les grands lits de Trapa ne représentent que 2,7% de la superficie totale de la portion de fleuve étudiée, mais ils éliminent entre 70 et 100% de l'azote total retenu dans cette section pendant les mois d'été et contribuent à près de 25% de l’élimination annuelle d’azote. / Rivers receive nitrogen (N) from their watershed and are the final sites of nutrient processing before delivery to coastal waters. Transformations of dissolved inorganic N (DIN) to gaseous N are highly variable and can impact both coastal eutrophication and greenhouse gas emissions. With anthropogenic N loading to aquatic ecosystems on the rise, nitrous oxide (N2O) emission from rivers should increase. Direct measurements of N2O from lake St. Pierre (LSP), an enlargement of the St. Lawrence River (SLR) indicate that although LSP is a net atmospheric source of N2O to the atmosphere fluxes are low compared to others rivers. Emissions are seasonally and inter-annually highly variable due to changes in hydrological conditions. N2O: N2 is also influenced by hydrology and lower ratios are observed in conditions of higher water discharge and elevated N charge into the ecosystem. In a cross system analysis, hydraulic load mitigates the relation between annual N2O flux and nitrate concentrations in rivers. In SLR, cyanobacterial mats colonizing low nitrate areas are a net source of N with high negative di-nitrogen (N2) fluxes. Given that fixation occurred during daylight and that oxygen concentrations in the water column were supersaturated, we hypothesize that N2 fixation is performed by the dominant cyanobacteria in anoxic micro-zone of the mat and/ or possibly by heterotrophic diazotrophs. Our estimates indicate that N fixation in the mats account for the replacement of up to 33% of the N loss via denitrification in the entire ecosystem during the study period. In the tidal Hudson River N2 production is highly variable between vegetated shallows and was associated with species-driven differences in dissolved oxygen (DO) dynamics during the ebb tide. N2 production was extremely high in invasive floating-leaved plants (Trapa natans) but was insignificant in submersed native vegetation. An estimate of summertime N2 production in Trapa beds suggests that these beds are a major seasonal hotspot for N removal. Large Trapa beds represent only 2.7% of the total area of the tidal Hudson but they remove between 70 and 100% of the total N retained in this section of the river during summer months and contribute to as much as 25% of the annual N removal.
48

Caractérisation hydrogéologique d'un aquifère en socle fracturé : Site de Ploemeur (Morbihan).

Touchard, Frédéric 02 October 1998 (has links) (PDF)
En Bretagne, l'alimentation en eau potable est assurée à 20% par les ressources en eaux souterraines contenues, principalement dans le socle fracturé. Du fait de la géométrie du réseau de fractures et des propriétés hydrauliques des roches, la productivité des aquifères bretons est généralement faible (400 à 1000 m3/j). A Ploemeur(Morbihan), un important gisement d'eau souterraine est exploité pour l'alimentation en eau potable, depuis juin 1991, à un débit moyen de 3000 m3/j. Les caractéristiques principales de cet aquifère sont 1) des arrivées d'eaux importantes, localisées au niveau de filons de pegmatites fracturées, et 2) une eau brute de bonne qualité ([N03]<1 Omg/I). Dans les milieux fracturés, les circulations de fluide et le transport de matière sont fortement dépendantes de la géométrie du réseau de fracture. C'est pourquoi, une meilleure compréhension du fonctionnement hydrogéologique est fondamentale quant à la gestion et la protection des ressources en eaux souterraines. Nous avons entrepris une caractérisation hydrogéologique afin de définir la structure du sous-sol e~ d'identifier les principaux processus à l'origine de la productivité de cet aquifère et de la qualité de l'eau. Cette étude pluridisciplinaire est basée sur des observations de terrain et sur l'utilisation de méthodes géophysiques, hydrauliques et hydrochimiques. La zone fracturée se trouve au contact entre des micaschistes et du granite et possède une géométrie subhorizontale favorisant sa recharge donc sa productivité. Ce modèle contraste avec ce qui est traditionnellement proposé pour les milieux fracturés en Bretagne. L'imagerie géophysique donne grossièrement la géométrie mais ne permet pas une détection fine des filons de pegmatites fracturés. Des essais de pompage ont permis de caractériser les propriétés hydrauliques. Ce type d'aquifère ne répond pas aux modèles standards développés en hydrogéologie; à la 1 fois, par son hétérogénéité intrinsèque et par la dimension de la zone d'écoulement. Par conséquent, le modèle mOy9n qui semble approprié est un aquifère fractal de dimension 1,4. Enfin l'analyse des chroniques chimiques, notamment des nitrates, a mis en évidence les processus 1) de mélange d'une eau récente (infiltrée après 1950 et polluée par les nitrates) avec une eau ancienne et 2) de dénitrification naturelle par oxydation de la pyrite. Une modélisation de ces chroniques sur la base d'une dénitrification bactérienne a permis de quantifier la cinétique de cette réaction d'oxydo-réduction et la dynamique du mélange qui évolue pendant le - ~ - pompage, par la mise en écoulement de drains préférentiels, entre la surface et la zone fracturée profonde.
49

Relations morphologie-cycle de l'azote au sein de l'épisolum humifère en futaie régulière pure de hêtre

Trap, Jean 15 July 2010 (has links) (PDF)
L'objectif de cette thèse est de contribuer à la compréhension (i) des relations morphologie/cycle de l'azote au sein de l'épisolum humifère, (ii) du cycle de l'azote au sein des différents horizons de l'épisolum humifère et (iii) des facteurs écologiques responsables du développement des formes d'humus et régulant le cycle de l'azote dans l'épisolum le long d'une chronoséquence de 130 ans en hêtraies pures. Le cycle de l'azote. L'ammonification potentielle nette augmente avec l'âge des peuplements au sein des horizons organiques alors que la nitrification potentielle et in situ nette diminue au sein des horizons OL et A. La nitrification potentielle nette est essentiellement localisée au sein des horizons OF et OH et l'ammonification est toujours plus élevée au sein des horizons organiques. Les transformations fongiques dominent nettement au sein de l'horizon OL alors que les processus bactériens sont principalement localisés dans l'horizon A. Les résultats montrent que les processus en amont du cycle (apport d'azote, ammonification) sont favorisés au cours de la maturation des peuplements alors que les processus en aval du cycle (nitrification, dénitrification) diminuent le long de la chronoséquence. Le lessivage des nitrates varie peu le long de la chronoséquence alors que le prélèvement de l'azote minéral (surtout l'ammonium) et le lessivage de l'ammonium augmentent significativement. Nous avons également observé des corrélations significatives entre les variables morphologiques et la nitrification nette ou la teneur en nitrate au sein des horizons organiques. Certaines variables morphologiques (i.e. l'épaisseur de l'OF, le nombre de turricules de vers de terre, la structure de l'horizon A ou le pourcentage de feuilles blanchies au sein de l'horizon OLv) présentent un potentiel indicateur de production in situ d'azote minéral. Les variables morphologiques spécifiques { l'horizon OLv pourraient constituer des indicateurs robustes de production potentielle d'azote minéral. Les facteurs de contrôle. Nous n'avons pas observé de variabilité significative des retombées de litière le long de la chronoséquence alors que la vitesse de décomposition de la litière diminue durant la phase de croissance des peuplements. De plus, la vitesse de décomposition de la litière est fortement corrélée à l'épaisseur des horizons OF et OH. La chute de la vitesse de décomposition de la litière serait donc responsable du changement mull-moder observé le long de la chronoséquence, alors que la production de litière jouerait un rôle secondaire mais contribuerait à un changement hemimoder-dysmoder. La chute de la vitesse de décomposition de la litière est en partie expliquée par des changements du profil structurel et fonctionnel des communautés microbiennes du sol le long de la chronoséquence. La biomasse fongique dans l'OL diminue le long de la chronoséquence. Le ratio biomasse fongique/biomasse bactérienne au sein des horizons OF et OH augmente le long de la chronoséquence. La diversité fonctionnelle des communautés bactériennes dans les horizons organiques est plus élevée dans les peuplements âgés. Ces changements fonctionnels au sein de l'épisolum humifère pourraient être sous le contrôle de la qualité de la litière de hêtre qui varie considérablement le long de la chronoséquence. Les résultats mettent en avant deux changements majeurs de la qualité de la litière. Le premier après 15 ans de vieillissement correspond à (1) une diminution des teneurs en Mg, en hémicellulose, en cellulose, en azote dans la lignine et (2) une augmentation des teneurs en Mn, en lignine, du C/N et du lignine/N. Le second après 95 ans de vieillissement correspond { (1) une baisse de la teneur en lignine, des cations et de l'azote dans la lignine et (2) une augmentation de la cellulose et de l'azote dans l'hémicellulose. Une approche expérimentale nous a permis de tester les effets de la litière de hêtre (apport et qualité) mais également des racines de hêtre (mycorhizées ou non) sur le cycle de l'azote et les communautés microbiennes du sol. La litière de hêtre, indépendamment de sa qualité initiale, inhibe la nitrification autotrophe et favorise la communauté fongique. Les racines, mycorhizées ou non, favorisent l'ammonification potentielle et les racines mycorhizées inhibent la nitrification autotrophe.
50

Perturbations anthropiques du réseau hydrographique du bassin de la Garonne, cas des metaux et des nitrates

Baque, David 28 September 2006 (has links) (PDF)
Le bassin de la Garonne, deuxième plus grand bassin français de par sa superficie (52000 km2 au Mas d'Agenais), fait l'objet de pressions anthropiques liées aux activités humaines agricoles, domestiques et industrielles.<br />Le prélèvement des eaux de la Garonne et de ces principaux affluents sur une année hydrologique a permis de détecter des enrichissements significatifs pour un grand nombre d'éléments en trace métalliques (ETM : Pb, Cr, Ni, Cu, Zn...). Il s'avère que la plus part de ces éléments métalliques en quantité de trace (ppb) sont éventuellement transportés sous forme particulaire par les rivières. De nombreux arguments vont dans le sens d'une source majeure diffuse de pollution à l'origine de ces enrichissements : les pluies. Toutefois, certains enrichissements spécifiques liés à des activités industrielles locales sont observées (cas du Cr sur l'Agout). Les bilans des flux [entrée (pluies), sortie (exutoire)] ont mis en évidence le stockage de certains métaux, vraisemblablement dans les sols et les sédiments du lit de la Garonne.<br />Le suivi des flux d'éléments dissous majeurs (NO3-, Cl-, SO42-, Mg2+, Ca2+, K+, Na+) et plus spécialement des nitrates, en période de basses eaux estivales (50 m3/s), dans les eaux d'un tronçon de Garonne Toulousaine, a permis la caractérisation et la quantification des apports anthropiques spécifiques en NO3-, Cl-, K+ et Na+ liés à cette agglomération. Certains de ces éléments, nitrates et potassium, sont partiellement éliminés tout au long de ce tronçon. Cette consommation peut être attribuée à l'activité biologique qui se développe dans le lit de la Garonne (développement du biofilm) dans ces périodes critiques où les eaux sont plus anoxiques (moins oxygénées).<br />L'étude plus spécifique du devenir des nitrates dans une zone humide riveraine de la Garonne (site de Monbéqui) a mis en exergue les capacités de ces sites à éliminer ce composé azoté. Ces zones humides sont le théâtre de la rencontre entre les eaux de la Garonne et de la nappe, propice au développement de nombreux processus biogéochimiques. Nous avons identifié et quantifié de fortes consommations biologiques en nitrates dans les zones de mélange entre la Garonne et la nappe. Cela résulte des effets couplés de l'oxydation de la matière organique, de la respiration aérobie, de la dénitrification et de la réduction des oxydes et hydroxydes de Mn et de Fe. Au contraire, dans les zones de sortie de nappe vers la Garonne, il semblerait qu'il y ait nitrification de l'ammonium probablement originaire des profondeurs de la nappe et/ou des sols.

Page generated in 0.1512 seconds