• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 3
  • 2
  • Tagged with
  • 9
  • 9
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Exploitation de la parcimonie pour la détection de cibles dans les images hyperspectrales / Exploitation of Sparsity for Hyperspectral Target Detection

Bitar, Ahmad 06 June 2018 (has links)
Le titre de cette thèse de doctorat est formé de trois mots clés: parcimonie, image hyperspectrale, et détection de cibles. La parcimonie signifie généralement « petit en nombre ou quantité, souvent répartie sur une grande zone ». Une image hyperspectrale est constituée d'une série d'images de la même scène spatiale, mais prises dans plusieurs dizaines de longueurs d'onde contiguës et très étroites, qui correspondent à autant de "couleurs". Lorsque la dimension spectrale est très grande, la détection de cibles devient délicate et caractérise une des applications les plus importantes pour les images hyperspectrales. Le but principal de cette thèse de doctorat est de répondre à la question « Comment et Pourquoi la parcimonie peut-elle être exploitée pour détecter de cibles dans les images hyperspectrales ? ». La réponse à cette question nous a permis de développer des méthodes de détection de cibles prenant en compte l'hétérogénéité de l'environnement, le fait que les objets d'intérêt sont situés dans des parties relativement réduites de l'image observée et enfin que l'estimation de la matrice de covariance d'un pixel d'une image hyperspectrale peut être compliquée car cette matrice appartient à un espace de grande dimension. Les méthodes proposées sont évaluées sur des données synthétiques ainsi que réelles, dont les résultats démontrent leur efficacité pour la détection de cibles dans les images hyperspectrales. / The title of this PhD thesis is formed by three keywords: sparsity, hyperspectral image, and target detection. Sparsity is a word that is used everywhere and in everyday life. It generally means « small in number or amount, often spread over a large area ». A hyperspectral image is a three dimensional data cube consisting of a series of images of the same spatial scene in a contiguous and multiple narrow spectral wavelength (color) bands. According to the high spectral dimensionality, target detection is not surprisingly one of the most important applications in hyperspectral imagery. The main objective of this PhD thesis is to answer the question « How and Why can sparsity be exploited for hyperspectral target detection? ». Answering this question has allowed us to develop different target detection methods that mainly take into consideration the heterogeneity of the environment, the fact that the total image area of all the targets is very small relative to the whole image, and the estimation challenge of the covariance matrix (surrounding the test pixel) in large dimensions. The proposed mehods are evaluated on both synthetic and real experiments, the results of which demonstrate their effectiveness for hyperspectral target detection.
2

Une architecture multi-agent pour la détection, la reconnaissance et l'identification de cibles

Ealet, Fabienne 25 June 2001 (has links) (PDF)
La fonction détection, reconnaissance et identification de cibles (DRI) impose l'intégration de connaissances hétérogènes en grande quantité. Ceci nous conduit vers des architectures distribuant la connaissance et permettant d'effectuer des traitements en parallèle et en concurrence. Nous proposons une approche multi-agent basée sur la mise en oeuvre d'agents spécialisés répondant aux principes d'incrémentalité, de distribution, de coopération, de focalisation et d'adaptation. L'architecture utilisée est de type multi-thread. Elle est dotée d'un administrateur et spécifie les moyens de communication entre les agents. Ceux-ci sont définis par leur rôle, leurs comportements et les informations qu'ils manipulent et qu'ils produisent. À un instant donné, différents agents coexistent dans l'image. Chacun dispose d'une autonomie pour accéder aux données et élaborer sa propre stratégie en fonction des informations disponibles. La planification est prise en charge localement au niveau de l'agent. Les connaissances nécessaires sont spécifiées dans une base de connaissances partagée par tous les agents. Les informations acquises sont stockées dans un modèle du monde. Le système se construit et vient s'enrichir au cours du temps, ceci impose une stratégie incrémentale dans la mise à jour des hypothèses. Cette modélisation est faite sous forme de réseaux bayésiens.
3

Robust target detection for Hyperspectral Imaging. / Détection robuste de cibles en imagerie Hyperspectrale.

Frontera Pons, Joana Maria 10 December 2014 (has links)
L'imagerie hyperspectrale (HSI) repose sur le fait que, pour un matériau donné, la quantité de rayonnement émis varie avec la longueur d'onde. Les capteurs HSI mesurent donc le rayonnement des matériaux au sein de chaque pixel pour un très grand nombre de bandes spectrales contiguës et fournissent des images contenant des informations à la fois spatiale et spectrale. Les méthodes classiques de détection adaptative supposent généralement que le fond est gaussien à vecteur moyenne nul ou connu. Cependant, quand le vecteur moyen est inconnu, comme c'est le cas pour l'image hyperspectrale, il doit être inclus dans le processus de détection. Nous proposons dans ce travail d'étendre les méthodes classiques de détection pour lesquelles la matrice de covariance et le vecteur de moyenne sont tous deux inconnus.Cependant, la distribution statistique multivariée des pixels de l'environnement peut s'éloigner de l'hypothèse gaussienne classiquement utilisée. La classe des distributions elliptiques a été déjà popularisée pour la caractérisation de fond pour l’HSI. Bien que ces modèles non gaussiens aient déjà été exploités dans la modélisation du fond et dans la conception de détecteurs, l'estimation des paramètres (matrice de covariance, vecteur moyenne) est encore généralement effectuée en utilisant des estimateurs conventionnels gaussiens. Dans ce contexte, nous analysons de méthodes d’estimation robuste plus appropriées à ces distributions non-gaussiennes : les M-estimateurs. Ces méthodes de détection couplées à ces nouveaux estimateurs permettent d'une part, d'améliorer les performances de détection dans un environment non-gaussien mais d'autre part de garder les mêmes performances que celles des détecteurs conventionnels dans un environnement gaussien. Elles fournissent ainsi un cadre unifié pour la détection de cibles et la détection d'anomalies pour la HSI. / Hyperspectral imaging (HSI) extends from the fact that for any given material, the amount of emitted radiation varies with wavelength. HSI sensors measure the radiance of the materials within each pixel area at a very large number of contiguous spectral bands and provide image data containing both spatial and spectral information. Classical adaptive detection schemes assume that the background is zero-mean Gaussian or with known mean vector that can be exploited. However, when the mean vector is unknown, as it is the case for hyperspectral imaging, it has to be included in the detection process. We propose in this work an extension of classical detection methods when both covariance matrix and mean vector are unknown.However, the actual multivariate distribution of the background pixels may differ from the generally used Gaussian hypothesis. The class of elliptical distributions has already been popularized for background characterization in HSI. Although these non-Gaussian models have been exploited for background modeling and detection schemes, the parameters estimation (covariance matrix, mean vector) is usually performed using classical Gaussian-based estimators. We analyze here some robust estimation procedures (M-estimators of location and scale) more suitable when non-Gaussian distributions are assumed. Jointly used with M-estimators, these new detectors allow to enhance the target detection performance in non-Gaussian environment while keeping the same performance than the classical detectors in Gaussian environment. Therefore, they provide a unified framework for target detection and anomaly detection in HSI.
4

Imagerie polarimétrique active par brisure d'orthogonalité / Active polarimetric imaging by orthogonality breaking sensing

Parnet, François 12 January 2018 (has links)
La polarisation de la lumière est très souvent utilisée en imagerie pour caractériser certaines propriétés de la matière, ou pour mettre en évidence des zones qui ne seraient peu ou pas contrastées avec des caméras d'intensité classiques. Nous explorons le potentiel d'une nouvelle technique de polarimétrie, dite de « brisure d'orthogonalité », pour réaliser des acquisitions de manière simple, directe et à haute cadence. Cette technique d'imagerie par balayage laser repose sur l'emploi d'une source de lumière bi-fréquence bi-polarisation pour sonder les caractéristiques polarimétriques (notamment le dichroïsme ou anisotropie d'absorption) des échantillons imagés.Nous explorons la possibilité du déport de la mesure de « brisure d'orthogonalité » par fibre optique faiblement multimode pour le développement d'endoscopes polarimétriques. Un tel dispositif vise à fournir une méthode de diagnostic rapide pour analyser des tissus biologiques profonds tout en évitant le recours aux biopsies. Nous démontrons, théoriquement et expérimentalement, la compatibilité de cette approche avec un dispositif d'endoscopie commercial (fibre ou bundle multicœurs, légèrement multimodes) pourvu que le nombre de modes guidés soit inférieur à une dizaine. D'autre part, nous présentons la conception, la réalisation, la validation et l'exploitation d'un démonstrateur d'imagerie active par brisure d'orthogonalité dans le proche infrarouge. Ce dernier vise des applications défense de détection et/ou décamouflage de cibles. Après caractérisation des bruits dominants les signaux acquis, nous illustrons l'apport du démonstrateur pour la mise en évidence d'éléments dichroïques. Enfin, nous démontrons que la technique de brisure d'orthogonalité peut être avantageusement, et très simplement, adaptée pour mesurer sélectivement le dichroïsme, la biréfringence, et la dépolarisation, paramètres essentiels à la détection d'objets manufacturés (cibles). Ces trois modalités, lorsqu'elles sont conjuguées, offrent au démonstrateur des capacités d'identification. / Polarimetric imaging is a useful tool to characterize some matter properties, or to highlight regions slightly or not contrasted with intensity cameras. We investigate the capability of a novel polarimetric technique, namely the “orthogonality breaking technique”, to perform direct and straightforward measurements at high speed. Relying on the use of a dual-frequency dual-polarization light source, this imaging modality probes polarimetric features (dichroism, or absorption anisotropy) in imaged samples.We explore the potential to perform orthogonality breaking measurements through few mode optical fibers towards polarimetric endoscopy. Such an imaging device would greatly improve the diagnosis efficiency to analyze in-depth biologic tissues without biopsy surgery. We show, theoretically and experimentally, the compatibility of our approach with a commercial flexible endoscope (slightly multimode multicore fibers or bundle) provided that the number of guided modes remains inferior to a dozen.On the other hand, we describe the design, the development, the validation and the exploitation of an active near infrared imaging demonstrator based on the orthogonality breaking technique for defense target detection applications. After characterization of the acquired signals noise, we illustrate the imager capability to reveal dichroic elements. Finally, we demonstrate that the orthogonality breaking technique can be advantageously and straightforwardly tailored to address selectively the dichroism, the birefringence and the depolarization, which are core parameters for the detection of manufactured objects (targets). The combination of these three modalities grants an identification capability to the demonstrator.
5

Imagerie multispectrale, vers une conception adaptée à la détection de cibles

Minet, Jean 01 December 2011 (has links) (PDF)
L'imagerie hyperspectrale, qui consiste à acquérir l'image d'une scène dans un grand nombre de bandes spectrales, permet de détecter des cibles là où l'imagerie couleur classique ne permettrait pas de conclure. Les imageurs hyperspectraux à acquisition séquentielle sont inadaptés aux applications de détection en temps réel. Dans cette thèse, nous proposons d'utiliser un imageur multispectral snapshot, capable d'acquérir simultanément un nombre réduit de bandes spectrales sur un unique détecteur matriciel. Le capteur offrant un nombre de pixels limité, il est nécessaire de réaliser un compromis en choisissant soigneusement le nombre et les profils spectraux des filtres de l'imageur afin d'optimiser la performance de détection. Dans cet objectif, nous avons développé une méthode de sélection de bandes qui peut être utilisée dans la conception d'imageurs multispectraux basés sur une matrice de filtres fixes ou accordables. Nous montrons, à partir d'images hyperspectrales issues de différentes campagnes de mesure, que la sélection des bandes spectrales à acquérir peut conduire à des imageurs multispectraux capables de détecter des cibles ou des anomalies avec une efficacité de détection proche de celle obtenue avec une résolution hyperspectrale. Nous développons conjointement un démonstrateur constitué d'une matrice de 4 filtres de Fabry-Perot accordables électroniquement en vue de son implantation sur un imageur multispectral snapshot agile. Ces filtres sont développés en technologie MOEMS (microsystèmes opto-électro-mécaniques) en partenariat avec l'Institut d'Electronique Fondamentale. Nous présentons le dimensionnement optique du dispositif ainsi qu'une étude de tolérancement qui a permis de valider sa faisabilité.
6

Détection et segmentation robustes de cibles mobiles par analyse du mouvement résiduel, à l'aide d'une unique caméra, dans un contexte industriel. Une application à la vidéo-surveillance automatique par drone. / A robust moving target detection by the analysis of the residual motion, with a mono-camera, in an industrial context. An application to the automatic aerial video surveillance.

Pouzet, Mathieu 05 November 2015 (has links)
Nous proposons dans cette thèse une méthode robuste de détection d’objets mobiles depuis une caméra en mouvement montée sur un vecteur aérien de type drone ou hélicoptère. Nos contraintes industrielles sont particulièrement fortes : robustesse aux grands mouvements de la caméra, robustesse au flou de focus ou de bougé, et précision dans la détection et segmentation des objets mobiles. De même, notre solution doit être optimisée afin de ne pas être trop consommatrice en termes de puissance de calcul. Notre solution consiste en la compensation du mouvement global, résultant du mouvement de la caméra, puis en l’analyse du mouvement résiduel existant entre les images pour détecter et segmenter les cibles mobiles. Ce domaine a été particulièrement exploré dans la littérature, ce qui se traduit par une richesse des méthodes proposées fondamentalement différentes. Après en avoir étudié un certain nombre, nous nous sommes aperçus qu’elles avaient toutes un domaine d’applications restreint, malheureusement incompatible avec nos préoccupations industrielles. Pour pallier à ce problème, nous proposons une méthodologie consistant à analyser les résultats des méthodes de l’état de l’art de manière à en comprendre les avantages et inconvénients de chacune. Puis, des hybridations de ces méthodes sont alors mis en place. Ainsi, nous proposons trois étapes successives : la compensation du mouvement entre deux images successives, l’élaboration d’un arrière plan de la scène afin de pouvoir segmenter de manière correcte les objets mobiles dans l’image et le filtrage de ces détections par confrontation entre le mouvement estimé lors de la première étape et le mouvement résiduel estimé par un algorithme local. La première étape consiste en l’estimation du mouvement global entre deux images à l’aide d’une méthode hybride composée d’un algorithme de minimisation ESM et d’une méthode de mise en correspondance de points d’intérêt Harris. L’approche pyramidale proposée permet d’optimiser les temps de calcul et les estimateursrobustes (M-Estimateur pour l’ESM et RANSAC pour les points d’intérêt) permettent de répondre aux contraintes industrielles. La deuxième étape établit un arrière plan de la scène à l’aide d’une méthode couplant les résultats d’une différence d’images successives (après compensation) et d’une segmentation en régions. Cette méthode réalise une fusion entre les informations statiques et dynamiques de l’image. Cet arrière plan est ensuite comparé avec l’image courante afin de détecter les objets mobiles. Enfin, la dernière étape confronte les résultats de l’estimation de mouvement global avec le mouvement résiduel estimé par un flux optique local Lucas-Kanade afin de valider les détections obtenues lors de la seconde étape. Les expériences réalisées dans ce mémoire sur de nombreuses séquences de tests (simulées ou réelles) permettent de valider la solution retenue. Nous montrons également diverses applications possibles de notre méthode proposée. / We propose a robust method about moving target detection from a moving UAV-mounted or helicopter-mounted camera. The industrial solution has to be robust to large motion of the camera, focus and motion blur in the images, and need to be accurate in terms of the moving target detection and segmentation. It does not have to need a long computation time. The proposed solution to detect the moving targets consists in the global camera motion compensation, and the residual motion analysis, that exists between the successive images. This research domain has been widely explored in the literature, implying lots of different proposed methods. The study of these methods show us that they all have a different and limited application scope, incompatible with our industrial constraints. To deal with this problem, we propose a methodology consisting in the analysis of the state-of-the-art method results, to extract their strengths and weaknesses. Then we propose to hybrid them. Therefore, we propose three successive steps : the inter-frame motion compensation, thecreation of a background in order to correctly detect the moving targets in the image and then the filtering of these detections by a comparison between the estimated global motion of the first step and the residual motion estimated by a local algorithm. The first step consists in the estimation of the global motion between two successive images thanks to a hybrid method composed of a minimization algorithm (ESM) and a feature-based method (Harris matching). The pyramidal implementation allows to optimize the computation time and the robust estimators (M-Estimator for the ESM algorithm and RANSAC for the Harris matching) allow to deal with the industrial constraints. The second step createsa background image using a method coupling the results of an inter-frame difference (after the global motion compensation) and a region segmentation. This method merges the static and dynamic information existing in the images. This background is then compared with the current image to detect the moving targets. Finally, the last step compares the results of the global motion estimation with the residual motion estimated by a Lucas-Kanade optical flow in order to validate the obtained detections of the second step. This solution has been validated after an evaluation on a large number of simulated and real sequences of images. Additionally, we propose some possible applications of theproposed method.
7

Modèles et algorithmes pour systèmes multi-robots hétérogènes : application à la patrouille et au suivi de cible / Models and algorithms for heterogeneous multi-robot systems : applied to patrolling and target tracking

Robin, Cyril 04 June 2015 (has links)
La détection et le suivi de cibles sont des missions fréquentes pour la robotique mobile, que le contexte soit civil, industriel ou militaire. Ces applications constituent un domaine de choix pour la planification multirobot, et sont abordées par de multiples communautés selon différents points de vue. Nous proposons dans un premier temps une taxonomie commune qui permetde regrouper et de comparer les différentes approches de ces problèmes, afin de mieux les analyser et de mettre en évidence leurs lacunes respectives. En particulier, on note la faible représentativité des modèles exploités, peu expressifs : la plupart des algorithmes évoluent dans un monde en deux dimensions où les observations et le déplacement sont conditionnés par lesmêmes obstacles. Ces modèles éloignés de la réalité nous semblent trop restrictifs pour pleinement exploiter la synergie des équipes multirobot hétérogènes : nous proposons une organisation des différents modèles nécessaires, en explicitant une séparation claire entre modèles et algorithmes de planification. Cette organisation est concrétisée par une librairie qui structure lesmodèles disponibles et définit les requêtes nécessaires aux algorithmes de planification. Dans un second temps, nous proposons un ensemble d’algorithmes utilisant les modèles définis précédemment pour planifier des missions de patrouille de zones et de poursuite de cibles. Ces algorithmes s’appuient sur un formalisme mathématique rigoureux afin d’étudier l’impact des modèlessur les performances. Nous analysons notamment l’impact sur la complexité – c’est-à-dire en quoi des modèles plus élaborés impactent la complexité de résolution – et sur la qualité des solutions résultantes, indépendamment des modèles, selon des métriques usuelles. D’une manière plus générale, les modèles sont un lien essentiel entre l’Intelligence Artificielle et la Robotique : leur enrichissement et leur étude approfondie permettent d’exhiber des comportements plus efficaces pour la réussite des missions allouées aux robots. Cette thèse contribue à démontrer l’importance des modèles pour la planification et la conduite de mission multirobots. / Detecting, localizing or following targets is at the core of numerous robotic applications in industrial, civilian and military application contexts. Much work has been devoted in various research communities to planning for such problems, each community with a different standpoint. Our thesis first provides a unifying taxonomy to go beyond the frontiers of specific communities and specific problems, and to enlarge the scope of prior surveys. We review various work related to each class of problems identified in the taxonomy, highlighting the different approaches, models and results. This analysis specifically points out the lack of representativityof the exploited models, which are in vast majority only 2D single-layer models where motion and sensing are mixed up. We consider those unrealistic models as too restrictive to handle the full synergistic potential of an heterogeneous team of cooperative robots. In response to this statement, we suggest a new organisation of the necessary models, stating clearly the links and separation between models and planning algorithms. This has lead to the development of a C++ library that structures the available models and defines the requests required by the planning process. We then exploit this library through a set of algorithms tackling area patrolling and target tracking. These algorithms are supported by a sound formalism and we study the impact of the models on the observed performances, with an emphasis on the complexity and the quality of the resultingsolutions. As a more general consideration, models are an essential link between Artificial Intelligence and applied Robotics : improving their expressiveness and studying them rigorously are the keys leading toward better robot behaviours and successful robotic missions. This thesis help to show how important the models are for planning and other decision processes formulti-robot missions.
8

Imagerie multispectrale, vers une conception adaptée à la détection de cibles / Multispectral imaging, a target detection oriented design

Minet, Jean 01 December 2011 (has links)
L’imagerie hyperspectrale, qui consiste à acquérir l'image d'une scène dans un grand nombre de bandes spectrales, permet de détecter des cibles là où l'imagerie couleur classique ne permettrait pas de conclure. Les imageurs hyperspectraux à acquisition séquentielle sont inadaptés aux applications de détection en temps réel. Dans cette thèse, nous proposons d’utiliser un imageur multispectral snapshot, capable d’acquérir simultanément un nombre réduit de bandes spectrales sur un unique détecteur matriciel. Le capteur offrant un nombre de pixels limité, il est nécessaire de réaliser un compromis en choisissant soigneusement le nombre et les profils spectraux des filtres de l'imageur afin d’optimiser la performance de détection. Dans cet objectif, nous avons développé une méthode de sélection de bandes qui peut être utilisée dans la conception d’imageurs multispectraux basés sur une matrice de filtres fixes ou accordables. Nous montrons, à partir d'images hyperspectrales issues de différentes campagnes de mesure, que la sélection des bandes spectrales à acquérir peut conduire à des imageurs multispectraux capables de détecter des cibles ou des anomalies avec une efficacité de détection proche de celle obtenue avec une résolution hyperspectrale. Nous développons conjointement un démonstrateur constitué d'une matrice de 4 filtres de Fabry-Perot accordables électroniquement en vue de son implantation sur un imageur multispectral snapshot agile. Ces filtres sont développés en technologie MOEMS (microsystèmes opto-électro-mécaniques) en partenariat avec l'Institut d'Electronique Fondamentale. Nous présentons le dimensionnement optique du dispositif ainsi qu'une étude de tolérancement qui a permis de valider sa faisabilité. / Hyperspectral imaging, which consists in acquiring the image of a scene in a large number of spectral bands, can be used to detect targets that are not visible using conventional color imaging. Hyperspectral imagers based on sequential acquisition are unsuitable for real-time detection applications. In this thesis, we propose to use a snapshot multispectral imager able to acquire simultaneously a small number of spectral bands on a single image sensor. As the sensor offers a limited number of pixels, it is necessary to achieve a trade-off by carefully choosing the number and the spectral profiles of the imager’s filters in order to optimize the detection performance. For this purpose, we developed a band selection method that can be used to design multispectral imagers based on arrays of fixed or tunable filters. We use real hyperspectral images to show that the selection of spectral bands can lead to multispectral imagers able to compete against hyperspectral imagers for target detection and anomaly detection applications while allowing snapshot acquisition and real-time detection. We jointly develop an adaptive snapshot multispectral imager based on an array of 4 electronically tunable Fabry-Perot filters. The filters are developed in MOEMS technology (Micro-Opto-Electro-Mechanical Systems) in partnership with the Institut d'Electronique Fondamentale. We present the optical design of the device and a study of tolerancing which has validated its feasibility.
9

Algorithms for the detection and localization of pedestrians and cyclists using new generation automotive radar systems / Algorithmes pour la détection et la localisation de piétons et de cyclistes en utilisant des systèmes radars automobiles de nouvelle générationedestrians and cyclists using new generation automotive radar systems

Abakar Issakha, Souleymane 11 December 2017 (has links)
En réponse au nombre toujours élevé de décès provoqués par les accidents routiers, l'industrie automobile a fait de la sécurité un sujet majeur de son activité global. Les radars automobiles qui étaient de simples capteurs pour véhicule de confort, sont devenus des éléments essentiels de la norme de sécurité routière. Le domaine de l’automobile est un domaine très exigent en terme de sécurité et les radars automobiles doivent avoir des performances de détection très élevées et doivent répondre à des nombreuses contraintes telles que la facilité de production et/ou le faible coût. Cette thèse concerne le développement d’algorithmes pour la détection et la localisation de piétons et de cyclistes pour des radars automobiles de nouvelle génération. Nous avons proposé une architecture de réseau d'antennes non uniforme optimale et des méthodes d'estimation spectrale à haute résolution permettant d’estimer avec précision la position angulaire des objets à partir de la direction d'arrivée (DoA) de leur réponse. Ces techniques sont adaptées à l'architecture du réseau d'antennes proposé et les performances sont évaluées à l'aide de données radar automobiles simulées et réelles acquises dans le cadre de scénarios spécifiques. Nous avons également proposé un détecteur de cible de collision, basé sur la décomposition en sous-espaces Doppler, dont l'objectif principal est d'identifier des cibles latérales dont les caractéristiques de trajectoire représentent potentiellement un danger de collision. Une méthode de calcul d'attribut de cible est également développée et un algorithme de classification est proposé pour discriminer les piétons, cyclistes et véhicules. Les différents algorithmes sont évalués et validés à l'aide de données radar automobiles réelles sur plusieurs scenarios. / In response to the persistently high number of deaths provoked by road crashes, the automotive industry has promoted safety as a major topic in their global activity. Automotive radars have been transformed from being simple sensors for comfort vehicle, to becoming essential elements of safety standard. The design of new generations automotive radars has to face various constraints and generally proposes a compromise between reliability, robustness, manufacturability, high-performance and low cost. The main objective of this PhD thesis is to design algorithms for the detection and localization of pedestrians and cyclists using new generation automotive radars. We propose an optimal non-uniform antenna array architecture and some high resolution spectral estimation methods to accurately estimate the position of objects from the direction of arrival (DOA) of their responses to the radar. These techniques are adapted to the proposed antenna array architecture and the performance is evaluated using both simulated and real automotive radar data, acquired in the frame of specific scenarios. We propose a collision target detector, based on the orthogonality of angle-Doppler subspaces, whose main goal is to identify lateral targets, whose trajectory features represent potentially a danger of collision. A target attribute calculation method is also developed and classification algorithm is proposed to classify pedestrian, cyclists and vehicles. This classification algorithm is evaluated and validated using real automotive radar data with several scenarios.

Page generated in 0.0775 seconds