Spelling suggestions: "subject:"davidic"" "subject:"david's""
1 |
The effects of defoliation on seasonal growth dynamics, the importance of internal nitrogen-recycling and the availability of soil nutrients : implications for the invasive potential of Buddleia davidii (Franch.) : a thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Science /Thomas, Marc Merlin. January 1900 (has links)
Thesis (Ph. D.)--University of Canterbury, 2007. / Typescript (photocopy). "September 2007." Includes bibliographical references (p. 147-179). Also available via the World Wide Web.
|
2 |
Modelling the germination of Buddleia davidii under constant conditions with the hydrothermal time concept : a thesis submitted in partial fulfilment for the degree of Master of Science in Forestry Science, University of Canterbury, New Zealand /Jay, Julien P. A. January 2006 (has links)
Thesis (M. For. Sc.)--University of Canterbury, 2006. / Typescript (photocopy). Includes bibliographical references (leaves 51-57). Also available via the World Wide Web.
|
3 |
Modelling the germination of Buddleia Davidii under constant conditions with the hydrothermal time conceptJay, Julien P.A. January 2006 (has links)
Buddleia davidii is a weed naturalized in New Zealand. It invades radiata pine plantations and causes major growth reduction and economic losses. Modelling its germination for predicting its occurrence will help foresters minimise its influence in forest plantations. Germination experiments have been carried out in laboratory to assess the influence of seed origin, defoliation, temperature and water stress on germination. Defoliation treatments did not significantly affect germination. The pattern of germination for seeds from four different places within New Zealand revealed so little difference that there is no need to define different models according to the site considered. However this similarity in germination pattern is limited to New Zealand and cannot be generalised to other countries where germination appears to be significantly different. The germination of Buddleia davidii seed appeared to be a function of hydrothermal time. The base, optimum and ceiling temperatures for Buddleia are respectively 9, 25 and from 30 to 35?, and Buddleia seed germinate between 0 and approximately -6 bars. In constant conditions, the predicted germination for Buddleia davidii with the thermal time model was limited to sub-optimal temperatures and the hydrotime and hydrothermal time models described well the germination pattern at any temperature and water potential. The modified hydrothermal time model proposed by Alvarado and Bradford (2002) most accurately predicted germination although it tended to overestimate the asymptotes. Overall the hydrothermal time model allowed prediction of actual timing of germination with much accuracy. This threshold model can therefore be used for modelling the germination of Buddleia davidii subjected to constant temperature and water potential conditions.
|
4 |
Fundamental understanding of the biochemical conversion of Buddleja davidii to fermentable sugarsHallac, Bassem Bishara 29 March 2011 (has links)
Lignocellulosic bioethanol is currently being explored as a substitution to fossil fuels. Many lignocellulosic materials are being examined but the importance is to find those with attractive agro-energy features. Producing lignocellulosic ethanol is challenging because lignocellulosic biomass is resistant to chemical and biological degradation. To reduce biomass recalcitrance, a pretreatment stage is required. Pretreatment is considered to be the most intensive operating/operating cost component of cellulosic ethanol production. Therefore, research is heavily focused on understanding the effect of pretreatment technologies on the fundamental characteristics of lignocellulosic biomass.
The first study in the thesis investigates Buddleja davidii as a potential biomass source for bioethanol production. The work focuses on the determination of ash, extractives, lignin, hemicellulose, and cellulose content in this plant, as well as detailed elucidation of the chemical structures of both lignin and cellulose by NMR spectroscopy. The study showed that B. davidii has several unique agro-energy features as well as some undesired characteristics.
The second study presents research on the ethanol organosolv pretreatment (EOP) of B. davidii and its ability to produce enzymatically hydrolysable substrates. It was concluded that the removal of hemicellulose, delignification, reduction in the degree of polymerization (DP) of cellulose, and the conversion of crystalline cellulose dimorphs (Iα/Iβ) to the easily degradable para-crystalline and amorphous celluloses were the characteristics accounted for efficient enzymatic deconstruction of B. davidii after EOP.
The third study provides a detailed elucidation of the chemical structure of ethanol organosolv lignin (EOL) of B. davidii by NMR spectroscopy. Such research was needed to understand the pretreatment mechanism in the context of delignification and alteration of the lignin structure. Future applications of the resulted EOL will be valuable for industrially viable bioethanol production process. EOP mainly cleaved β-O-4' interlinkages via homolysis, decreased the DP of lignin, and increased the degree of condensation of lignin. EOL had low oxygen content, molecular weight, and aliphatic OH as well as high phenolic OH, which are qualities that make it suitable for different co-product applications.
The last study provides information on the anatomical characteristics of pretreated B. davidii biomass after EOP. The importance of this research was to further understand the alterations that occur to the cellular structure of the biomass which can then be correlated with its enzymatic digestibility. The results concluded that the physical distribution of lignin within the biomass matrix and the partial removal of middle lamella lignin were key factors influencing enzymatic hydrolysis.
|
5 |
The effects of defoliation on seasonal growth dynamics, the importance of internal nitrogen-recycling and the availability of soil nutrients: implications for the invasive potential of Buddleia davidii (Franch.)Thomas, Marc Merlin January 2007 (has links)
ABSTRACT Assessing the impact of herbivory on plant growth and reproduction is important to predict the success of biocontrol of invasive plants. Leaf area production is most important, as photosynthesis provides the foundation for all plant growth and fitness. High levels of defoliation generally reduce the productivity of plants. However, leaf area production fluctuates during the season and compensational growth may occur, which both complicate accurate estimations of defoliation impacts. Under field conditions the interaction with neighbouring species and the availability of soil nutrients need to be assessed in order to gauge long term effects of weed invasions on natural environments. In this thesis I have investigated seasonal leaf area dynamics in Buddleia davidii following repeated artificial defoliation, to quantify compensational leaf production and to understand the regulatory mechanisms involved. The impact of defoliation on photosynthesis, seed production, germination and nitrogen translocation patterns were analysed. Finally, possible facilitation between B. davidii and a native nitrogen fixer, Coriaria arborea, and the impact of B. davidii on soil nutrient availability were investigated. In defoliated B. davidii, increased node production (34%), leaf size (35%) and leaf longevity (12%) resulted in 52% greater total emergent leaf area in the short term. However, with time and diminishing tissue resources the compensation declined. No upregulation of photosynthesis was observed in pre-existing leaves. Compensational leaf area production occurred at the expense of reproduction but the germination capacity of individual seeds was unaffected. In B. davidii, nitrogen reserves are stored in old leaves. Thus, the defoliation-induced decline in tissue reserves led to changes in the remobilisation pattern and increased the importance of soil uptake but biomass production especially that of roots had declined significantly (39%). Slight facilitation effects from the neighbouring nitrogen fixer and VA-mycorrhizae were observed on B. davidii in the field, while its impact on soil chemistry during spring was negligible. Defoliation of B. davidii resulted in priority allocation of resources to compensational leaf growth and a concomitant reduction in flower and seed production. The compensational leaf production greatly increased the demand for nitrogen, while continued leaf removal decreased the pool of stored nitrogen. This led to changes in nitrogen remobilisation and an increased importance of root uptake. However, the significant decline in root growth will likely impair adequate nutrient uptake from the soil, which is especially important where B. davidii invades nutrient poor habitats and will increase the success of biocontrol of the species. While mycorrhizae increase nutrient accessibility for B. davidii, it is likely that the additional stress of defoliation will negate the small facilitative effects from nitrogen-fixing species like C. arborea. This research provides new insights into the mechanisms regulating leaf area dynamics at the shoot level and systemic physiological responses to defoliation in plants, such as nitrogen translocation. The compensation in leaf area production was considerable but only transitory and thus, the opportunity to alleviate effects of leaf loss though adjustment of light capture limited. However, to ascertain that photosynthesis at whole plant level does not increase after defoliation, more detailed measurements especially on new grown leaves are necessary. In general, defoliation had greatly reduced plant growth and performance so that an optimistic outlook for controlling this species can be given. Conclusions about the wider impacts of B. davidii on soil chemistry and community function will require further research.
|
6 |
The effects of defoliation on seasonal growth dynamics, the importance of internal nitrogen-recycling and the availability of soil nutrients: implications for the invasive potential of Buddleia davidii (Franch.)Thomas, Marc Merlin January 2007 (has links)
ABSTRACT Assessing the impact of herbivory on plant growth and reproduction is important to predict the success of biocontrol of invasive plants. Leaf area production is most important, as photosynthesis provides the foundation for all plant growth and fitness. High levels of defoliation generally reduce the productivity of plants. However, leaf area production fluctuates during the season and compensational growth may occur, which both complicate accurate estimations of defoliation impacts. Under field conditions the interaction with neighbouring species and the availability of soil nutrients need to be assessed in order to gauge long term effects of weed invasions on natural environments. In this thesis I have investigated seasonal leaf area dynamics in Buddleia davidii following repeated artificial defoliation, to quantify compensational leaf production and to understand the regulatory mechanisms involved. The impact of defoliation on photosynthesis, seed production, germination and nitrogen translocation patterns were analysed. Finally, possible facilitation between B. davidii and a native nitrogen fixer, Coriaria arborea, and the impact of B. davidii on soil nutrient availability were investigated. In defoliated B. davidii, increased node production (34%), leaf size (35%) and leaf longevity (12%) resulted in 52% greater total emergent leaf area in the short term. However, with time and diminishing tissue resources the compensation declined. No upregulation of photosynthesis was observed in pre-existing leaves. Compensational leaf area production occurred at the expense of reproduction but the germination capacity of individual seeds was unaffected. In B. davidii, nitrogen reserves are stored in old leaves. Thus, the defoliation-induced decline in tissue reserves led to changes in the remobilisation pattern and increased the importance of soil uptake but biomass production especially that of roots had declined significantly (39%). Slight facilitation effects from the neighbouring nitrogen fixer and VA-mycorrhizae were observed on B. davidii in the field, while its impact on soil chemistry during spring was negligible. Defoliation of B. davidii resulted in priority allocation of resources to compensational leaf growth and a concomitant reduction in flower and seed production. The compensational leaf production greatly increased the demand for nitrogen, while continued leaf removal decreased the pool of stored nitrogen. This led to changes in nitrogen remobilisation and an increased importance of root uptake. However, the significant decline in root growth will likely impair adequate nutrient uptake from the soil, which is especially important where B. davidii invades nutrient poor habitats and will increase the success of biocontrol of the species. While mycorrhizae increase nutrient accessibility for B. davidii, it is likely that the additional stress of defoliation will negate the small facilitative effects from nitrogen-fixing species like C. arborea. This research provides new insights into the mechanisms regulating leaf area dynamics at the shoot level and systemic physiological responses to defoliation in plants, such as nitrogen translocation. The compensation in leaf area production was considerable but only transitory and thus, the opportunity to alleviate effects of leaf loss though adjustment of light capture limited. However, to ascertain that photosynthesis at whole plant level does not increase after defoliation, more detailed measurements especially on new grown leaves are necessary. In general, defoliation had greatly reduced plant growth and performance so that an optimistic outlook for controlling this species can be given. Conclusions about the wider impacts of B. davidii on soil chemistry and community function will require further research.
|
7 |
Desarrollo de un modelo de simulación para la asistencia a la toma de decisiones agronómicas en el manejo integrado de malezasMolinari, Franco Ariel 10 July 2023 (has links)
Algunas especies vegetales se consideran malezas debido a que alcanzan niveles
poblacionales tales, que al competir con los cultivos causan perjuicios sobre su
producción. Por este motivo, en determinadas ocasiones es necesario realizar
operaciones de control sobre las poblaciones de malezas para reducir su infestación
hasta valores que permitan obtener niveles de producción deseados.
A nivel mundial el control químico ha sido el método más práctico y eficiente para
controlar malezas, especialmente en cultivos extensivos. Sin embargo, el uso continuo
de herbicidas desde hace más de 40 años trajo aparejado un impacto negativo sobre el
medio ambiente, la salud y la proliferación de malezas resistentes. Estas consecuencias
se deben tener en cuenta para definir manejos adecuados a largo plazo.
Desde una perspectiva estratégica, un programa sostenible de manejo de malezas
debería basarse en una combinación de métodos tanto preventivos como curativos que
apliquen principios basados en el conocimiento, dando lugar a lo que se conoce como
Manejo Integrado de Malezas, MIM. En este contexto, el modelado matemático se
presenta como una herramienta apropiada para ayudar a guiar el proceso de toma de
decisiones asociado al MIM.
En esta tesis se propone un modelo de simulación para asistir en la toma de decisiones
relacionadas con el MIM. El modelo se desarrolló en colaboración con profesionales
extensionistas y fue concebido como una herramienta flexible y adaptable a diversos
sistemas de producción agrícola, poseyendo un mayor nivel de detalle que otros
modelos similares.
Dicho modelo permite simular la dinámica multianual de una maleza en competencia
con el cultivo. El ciclo de vida de la maleza se representa a través de los componentes
demográficos típicos (ej. banco de semillas, plántulas, adultos en estado vegetativo y
reproductivo, producción de semillas). El desarrollo del cultivo se simula de forma
simplificada a fin de cuantificar diariamente los efectos de la competencia
interespecífica. La simulación de distintas estrategias de MIM permite calcular y
comparar indicadores económicos, ambientales y agronómicos.
Palabras claves: Manejo Integrado de Malezas, Modelado de sistemas agrícolas, Avena
fatua L., Euphorbia davidii Subils., Trigo, Cebada, Soja, Competencia de malezas,
Asistencia a la toma de decisiones, Margen bruto, Valor actual, Impacto ambiental,
Malezas resistentes, Dinámica poblacional de malezas. / Some species considered weeds reach population levels that impact on crops’
production. For this reason, on certain occasions, it is necessary to carry out control
operations to reduce weed infestations to levels compatible with reasonable crops’
yields.
Worldwide, chemical control has been the most practical and efficient method for
controlling weeds, especially in extensive crops. However, the continuous use of
herbicides for over 40 years generated a well-known negative impact on environment
and health and the proliferation of resistant species. These environmental
consequences must be taken into account to define appropriate long-term management
practices.
From a strategic perspective, a sustainable weed management program should be based
on a combination of preventive and curative methods that apply knowledge-based
principles, leading to as the so-called Integrated Weed Management (IWM). In this
context, mathematical modelling arises as an appropriate tool to assist in the decision-
making process associated with IWM.
This thesis proposes a simulation model to support decision-making related to IWM. The
model was developed in collaboration with extensionists and was conceived as a flexible
and adaptable tool for various agricultural production systems, possessing a higher level
of detail than similar models.
This model simulates multi-year dynamics of a weed in competition with a crop. The
weed's life cycle is represented through typical demographic components (e.g. seed
bank, seedlings, vegetative and reproductive individuals, and seed production). The
development of the crop is simulated in a simplified manner in order to quantify the
daily effects of interspecific competition. The simulation of different IWM strategies
allows for the quantification and comparison of economic, environmental, and
agronomic indexes.
|
Page generated in 0.0407 seconds