• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1772
  • 226
  • 157
  • 1
  • Tagged with
  • 2149
  • 2149
  • 954
  • 948
  • 948
  • 471
  • 262
  • 240
  • 221
  • 211
  • 199
  • 183
  • 177
  • 176
  • 167
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Stability and Stabilization of Large-Scale Digital Networks / Stabilität und Stabilisierung großskaliger digitaler Netze

Sailer, Rudolf January 2014 (has links) (PDF)
Several aspects of the control of large-scale systems communicating over digital channels are considered. In particular, the issue of delay, quantization, and packet loss is addressed with the help of dynamic quantization. New small-gain results suitable for networked control systems are introduced and it is shown that many of the known small-gain conditions are equivalent. The issue of bandwidth limitations is addressed with the help of event-triggered control. A novel approach termed parsimonious triggering is introduced, which helps to rule out the occurrence of an infinite number of triggering events within finite time. Moreover, the feasibility of the presented approaches is demonstrated by numerical examples. / Es werden großskalige Netzwerke betrachtet, bei denen die Zustandsrückführung über digitale Kommunikationskanäle erfolgt. Typische Effekte digitaler Kommunikation wie Totzeiten, Quantisierung und Paketverlust werden mithilfe der sogenannten dynamischen Quantisierung bearbeitet. Im Kontext der Netzwerkkontrollsysteme werden neue small-gain Ergebnisse eingeführt, die auf den Bedarf der digitalen Kommunikation eingehen. Des Weiteren wird gezeigt, dass viele der aus der Literatur bekannten small-gain Ergebnisse äquivalent sind. Eventbasierte Kontrollstrategien werden vorgestellt, um das Problem der Bandbreitenbeschränkung zu umgehen. Ein neuer Ansatz, parsimonious triggering genannt, wird vorgestellt, um das Problem des unendlich oft Schaltens in endlicher Zeit zu umgehen. Abschließend wird anhand von numerischen Beispielen die Anwendbarkeit der vorgestellten Methoden demonstriert.
62

Analysis of discretization schemes for Fokker-Planck equations and related optimality systems / Analyse von Diskretisierungsmethoden für Fokker-Planck-Gleichungen und verwandte Optimalitätssysteme

Mohammadi, Masoumeh January 2015 (has links) (PDF)
The Fokker-Planck (FP) equation is a fundamental model in thermodynamic kinetic theories and statistical mechanics. In general, the FP equation appears in a number of different fields in natural sciences, for instance in solid-state physics, quantum optics, chemical physics, theoretical biology, and circuit theory. These equations also provide a powerful mean to define robust control strategies for random models. The FP equations are partial differential equations (PDE) describing the time evolution of the probability density function (PDF) of stochastic processes. These equations are of different types depending on the underlying stochastic process. In particular, they are parabolic PDEs for the PDF of Ito processes, and hyperbolic PDEs for piecewise deterministic processes (PDP). A fundamental axiom of probability calculus requires that the integral of the PDF over all the allowable state space must be equal to one, for all time. Therefore, for the purpose of accurate numerical simulation, a discretized FP equation must guarantee conservativeness of the total probability. Furthermore, since the solution of the FP equation represents a probability density, any numerical scheme that approximates the FP equation is required to guarantee the positivity of the solution. In addition, an approximation scheme must be accurate and stable. For these purposes, for parabolic FP equations on bounded domains, we investigate the Chang-Cooper (CC) scheme for space discretization and first- and second-order backward time differencing. We prove that the resulting space-time discretization schemes are accurate, conditionally stable, conservative, and preserve positivity. Further, we discuss a finite difference discretization for the FP system corresponding to a PDP process in a bounded domain. Next, we discuss FP equations in unbounded domains. In this case, finite-difference or finite-element methods cannot be applied. By employing a suitable set of basis functions, spectral methods allow to treat unbounded domains. Since FP solutions decay exponentially at infinity, we consider Hermite functions as basis functions, which are Hermite polynomials multiplied by a Gaussian. To this end, the Hermite spectral discretization is applied to two different FP equations; the parabolic PDE corresponding to Ito processes, and the system of hyperbolic PDEs corresponding to a PDP process. The resulting discretized schemes are analyzed. Stability and spectral accuracy of the Hermite spectral discretization of the FP problems is proved. Furthermore, we investigate the conservativity of the solutions of FP equations discretized with the Hermite spectral scheme. In the last part of this thesis, we discuss optimal control problems governed by FP equations on the characterization of their solution by optimality systems. We then investigate the Hermite spectral discretization of FP optimality systems in unbounded domains. Within the framework of Hermite discretization, we obtain sparse-band systems of ordinary differential equations. We analyze the accuracy of the discretization schemes by showing spectral convergence in approximating the state, the adjoint, and the control variables that appear in the FP optimality systems. To validate our theoretical estimates, we present results of numerical experiments. / Die Fokker-Planck (FP) Gleichung ist ein grundlegendes Modell in thermodynamischen kinetischen Theorien und der statistischen Mechanik. Die FP-Gleichungen sind partielle Differentialgleichungen (PDE), welche die zeitliche Entwicklung der Wahrscheinlichkeitsdichtefunktion (PDF) von stochastischen Prozessen beschreiben. Diese Gleichungen sind von verschiedenen Arten, abhängig von dem zugrunde liegenden stochastischen Prozess. Insbesondere sind dies parabolische PDEs für die PDF von Ito Prozessen, und hyperbolische PDEs für teilweise deterministische Prozesse (PDP). Ein grundlegendes Axiom der Wahrscheinlichkeitsrechnung verlangt, dass das Integral der PDF über den ganzen Raum für alle Zeit muss gleich sein muss. Daher muss eine diskretisierte FP Gleichung Konservativität der Gesamtwahrscheinlichkeit garantieren. Da die Lösung der FP Gleichung eine Wahrscheinlichkeitsdichte darstellt, muss das numerische Verfahren, das die FP-Gleichung approximiert, die Positivität der Lösung gewährleisten. Darüber hinaus muss ein Approximationsschema genau und stabil sein. Für FP-Gleichungen auf begrenzte Bereiche untersuchen wir das Chang-Cooper (CC) Schema. Wir beweisen, dass die Diskretisierungsmethoden genau, bedingt stabil und konservativ sind, und Positivität bewahren. Als nächstes diskutieren wir FP Gleichungen in unbeschränkten Gebieten und wir wählen die Hermite spektrale Diskretisierung. Die resultierenden diskretisierten Schemata werden analysiert. Stabilität und spektrale Genauigkeit der Hermiten spektralen Diskretisierung ist bewiesen. Darüber hinaus untersuchen wir die Konservativität der numerischen Lösungen der FP Gleichungen. Im letzten Teil dieser Arbeit diskutieren wir Probleme der optimalen Steuerung, die von FP Gleichungen geregelt werden. Wir untersuchen dann die Hermite spektrale Diskretisierung von FP Optimalitätssystemen in unbeschränkten Gebieten. Wir erhalten spärliche Band-Systeme gewöhnlicher Differentialgleichungen. Wir analysieren die Genauigkeit der Diskretisierungsmethoden, indem wir spektrale Konvergenz bei der Annäherung des zustandes, das Adjoint, und die Stellgrößen, die in den FP Optimalitätssystemen erscheinen, aufzeigen. Um unsere theoretischen Schätzungen zu bestätigen, präsentieren wir Ergebnisse von numerischen Experimenten.
63

On the control through leadership of multi-agent systems / Die Steuerung durch den Hauptagent von Multi-Agenten -Systemen

Wongkaew, Suttida January 2015 (has links) (PDF)
The investigation of interacting multi-agent models is a new field of mathematical research with application to the study of behavior in groups of animals or community of people. One interesting feature of multi-agent systems is collective behavior. From the mathematical point of view, one of the challenging issues considering with these dynamical models is development of control mechanisms that are able to influence the time evolution of these systems. In this thesis, we focus on the study of controllability, stabilization and optimal control problems for multi-agent systems considering three models as follows: The first one is the Hegselmann Krause opinion formation (HK) model. The HK dynamics describes how individuals' opinions are changed by the interaction with others taking place in a bounded domain of confidence. The study of this model focuses on determining feedback controls in order to drive the agents' opinions to reach a desired agreement. The second model is the Heider social balance (HB) model. The HB dynamics explains the evolution of relationships in a social network. One purpose of studying this system is the construction of control function in oder to steer the relationship to reach a friendship state. The third model that we discuss is a flocking model describing collective motion observed in biological systems. The flocking model under consideration includes self-propelling, friction, attraction, repulsion, and alignment features. We investigate a control for steering the flocking system to track a desired trajectory. Common to all these systems is our strategy to add a leader agent that interacts with all other members of the system and includes the control mechanism. Our control through leadership approach is developed using classical theoretical control methods and a model predictive control (MPC) scheme. To apply the former method, for each model the stability of the corresponding linearized system near consensus is investigated. Further, local controllability is examined. However, only in the Hegselmann-Krause opinion formation model, the feedback control is determined in order to steer agents' opinions to globally converge to a desired agreement. The MPC approach is an optimal control strategy based on numerical optimization. To apply the MPC scheme, optimal control problems for each model are formulated where the objective functions are different depending on the desired objective of the problem. The first-oder necessary optimality conditions for each problem are presented. Moreover for the numerical treatment, a sequence of open-loop discrete optimality systems is solved by accurate Runge-Kutta schemes, and in the optimization procedure, a nonlinear conjugate gradient solver is implemented. Finally, numerical experiments are performed to investigate the properties of the multi-agent models and demonstrate the ability of the proposed control strategies to drive multi-agent systems to attain a desired consensus and to track a given trajectory. / Die Untersuchung von interagierende Multiagent-Modellen ist ein neues mathematisches Forschungsfeld, das sich mit dem Gruppenverhalten von Tieren beziehungsweise Sozialverhalten von Menschen. Eine interessante Eigenschaft der Multiagentensysteme ist kollektives Verhalten. Eine der herausfordernden Themen, die sich mit diesen dynamischen Modellen befassen, ist in der mathematischen Sicht eine Entwicklung der Regelungsmechanismen, die die Zeitevolution dieser Systemen beeinflussen können. In der Doktorarbeit fokussieren wir uns hauptsächlich auf die Studie von Problemen der Steuerbarkeit, Stabilität und optimalen Regelung für Multiagentensysteme anhand drei Modellen wie folgt: Das erste ist die Hegselmann- Krause opinion formation Modell. Die HK-Dynamik beschreibt die Änderung der Meinungen von einzelnen Personen aufgrund der Interaktionen mit den Anderen. Die Studie dieses Model fokussiert auf bestimmte Regelungen, um die Meinungen der Agenten zu betreiben, damit eine gewünschte Zustimmung erreicht wird. Das zweite Model ist das Heider social balance (HB) Modell. Die HB-Dynamik beschreibt die Evolution von Beziehungen in einem sozialen Netzwerk. Ein Ziel der Untersuchung dieses Systems ist die Konstruktion der Regelungsfunktion um die Beziehungen zu steuern, damit eine Freundschaft erreicht wird. Das dritte Modell ist ein Schar-Modell, das in biologischen Systemen beobachteten kollektive Bewegung beschreibt. Das Schar-Model unter Berücksichtigung beinhaltet Selbstantrieb, Friktion, Attraktion Repulsion und Anpassungsfähigkeiten. Wir untersuchen einen Regler für die Steuerung des Schar-Systems, um eine gewünschte Trajektorie zu verfolgen. Üblich wie alle dieser Systeme soll laut unsere Strategie ein Hauptagent, der sich mit alle anderen Mitgliedern des Systems interagieren, hinzugefügt werden und das Regelungsmechanismus inkludiert werden. Unserer Regelung anhand dem Vorgehen mit Führungsverhalten ist unter Verwendung von klassischen theoretischen Regelungsmethode und ein Schema der modellpr ädiktiven Regelung entwickelt. Zur Ausführung der genannten Methode wird für jedes Modell die Stabilität der korrespondierenden Linearsystem in der Nähe von Konsensus untersucht. Ferner wird die lokale Regelbarkeit geprüft. Nur in dem Hegselmann-Krause opinion formation Modell. Der Regler wird so bestimmt, dass die Meinungen der Agenten gesteuert werden können. Dadurch konvergiert es global zu eine gewünschten Zustimmung. Die MPC-Vorgehensweise ist eine optimale Regelung Strategie, die auf numerische Optimierung basiert. Zu Verwendung des MPC-Shema werden die optimalen Regelungsproblemen für jedes Modell formuliert, wo sich die objektive Funktionen in Abhängigkeit von den gewünschten objective des Problems unterscheidet. Die erforderliche Optimalitätsbedingungen erster Ordnung für jedes Problem sind präsentiert. Auÿerdem für die numerische Prozess, eine Sequenz von offenen diskreten Optimalitätssystemen ist nach dem expliziten Runge-Kutta Schema gelöst. In dem Optimierungsverfahren ist ein nicht linear konjugierter Gradientlöser umgesetzt. Schlieÿlich sind numerische Experimenten in der Lage, die Eigenschaften der Multiagent-Modellen zu untersuchen und die Fähigkeiten der gezielten Regelstrategie zu beweisen. Die Strategie nutzt zu betreiben Multiagentensysteme, um einen gewünschten Konsensus zu erreichen und eine gegebene Trajektorie zu verfolgen.
64

Loewner equations in multiply connected domains / Loewner Gleichungen für mehrfach zusammenhängende Gebiete

Böhm, Christoph January 2015 (has links) (PDF)
The first goal of this thesis is to generalize Loewner's famous differential equation to multiply connected domains. The resulting differential equations are known as Komatu--Loewner differential equations. We discuss Komatu--Loewner equations for canonical domains (circular slit disks, circular slit annuli and parallel slit half-planes). Additionally, we give a generalisation to several slits and discuss parametrisations that lead to constant coefficients. Moreover, we compare Komatu--Loewner equations with several slits to single slit Loewner equations. Finally we generalise Komatu--Loewner equations to hulls satisfying a local growth property. / Zunächst diskutieren wir eine Verallgemeinerung der radialen und chordalen Loewner Differentialgleichung auf mehrfach zusammenhängende Standardgebiete (Kreisschlitzgebiete, Kreisringschlitzgebiete, parallel Schlitz-Halbebenen). Diese Differentialgleichungen werden Komatu-Loewner Differentialgleichungen bezeichnet. Wir verallgemeinern diese auch auf mehrere Schlitze und zeigen, dass es Parametrisierungen gibt, die zu konstanten Koeffizienten führen. Zusätzlich vergleichen wir Komatu-Loewner Gleichungen für mehrere Schlitze mit Loewner Gleichungen im Einschlitzfall. Schließlich untersuchen wir den Fall von allgemeineren Wachstumsprozessen, die dadurch charakterisiert sind, dass nur ein "lokaler Zuwachs" möglich ist.
65

Extreme Value Theory in Higher Dimensions - Max-Stable Processes and Multivariate Records / Höherdimensionale Extremwerttheorie - Max-Stabile Prozesse und Multivariate Rekorde

Zott, Maximilian January 2016 (has links) (PDF)
Die Extremwerttheorie behandelt die stochastische Modellierung seltener und extremer Ereignisse. Während fundamentale Theorien in der klassischen Stochastik, wie etwa die Gesetze der großen Zahlen oder der zentrale Grenzwertsatz das asymptotische Verhalten der Summe von Zufallsvariablen untersucht, liegt in der Extremwerttheorie der Fokus auf dem Maximum oder dem Minimum einer Menge von Beobachtungen. Die Grenzverteilung des normierten Stichprobenmaximums unter einer Folge von unabhängigen und identisch verteilten Zufallsvariablen kann durch sogenannte max-stabile Verteilungen charakterisiert werden. In dieser Dissertation werden verschiedene Aspekte der Theorie der max-stabilen Zufallsvektoren und stochastischen Prozesse behandelt. Insbesondere wird der Begriff der 'Differenzierbarkeit in Verteilung' eines max-stabilen Prozesses eingeführt und untersucht. Ferner werden 'verallgemeinerte max-lineare Modelle' eingeführt, um einen bekannten max-stabilen Zufallsvektor durch einen max-stabilen Prozess zu interpolieren. Darüber hinaus wird der Zusammenhang von extremwerttheoretischen Methoden mit der Theorie der multivariaten Rekorde hergestellt. Insbesondere werden sogenannte 'vollständige' und 'einfache' Rekorde eingeführt, und deren asymptotisches Verhalten untersucht. / Extreme value theory is concerned with the stochastic modeling of rare and extreme events. While fundamental theories of classical stochastics - such as the laws of small numbers or the central limit theorem - are used to investigate the asymptotic behavior of the sum of random variables, extreme value theory focuses on the maximum or minimum of a set of observations. The limit distribution of the normalized sample maximum among a sequence of independent and identically distributed random variables can be characterized by means of so-called max-stable distributions. This dissertation concerns with different aspects of the theory of max-stable random vectors and stochastic processes. In particular, the concept of 'differentiability in distribution' of a max-stable process is introduced and investigated. Moreover, 'generalized max-linear models' are introduced in order to interpolate a known max-stable random vector by a max-stable process. Further, the connection between extreme value theory and multivariate records is established. In particular, so-called 'complete' and 'simple' records are introduced as well as it is examined their asymptotic behavior.
66

Differentialgleichungen in Frécheträumen / Differential equations in Fréchet Spaces

Dirr, Gunther January 2001 (has links) (PDF)
Teil 1 der Arbeit beinhaltet eine Zusammenfassung grundlegender funktionalanalytischer Ergebnisse sowie eine Einführung in die Integral- und Differentialrechnung in Frécheträumen. Insbesondere wird in Kapitel 2 eine ausführliche Darstellung des Lebesgue-Bochner-Integrals auf Frécheträumen geliefert. Teil 2 behandelt die Theorie der linearen Differentialgleichungen auf Frécheträumen. Dazu werden in Kapitel 3 stark differenzierbare Halbgruppen und deren infinitesimale Generatoren charakterisiert. In Kapitel 4 werden diese Ergebnisse benutzt, um lineare Evolutionsgleichungen (von hyperbolischem oder parabolischem Typ) zu untersuchen. Teil 3 enthält die zentralen Resultate der Arbeit. In Kapitel 5 werden zwei Existenz- und Eindeutigkeitssätze für nichtlineare gewöhnliche Differentialgleichungen in zahmen Frécheträumen bewiesen. Kapitel 6 liefert eine Anwendung der Ergebnisse aus Kapitel 5 auf nichtlineare partielle Differentialgleichungen erster Ordnung. / The first part of this thesis gives a summary on some basic results in functional analysis and an introduction to calculus in Fréchet spaces. Particularly, a detailed treatment of the Lebesgue-Bochner integral in Fréchet spaces is developed in chapter 2. Part 2 is devoted to the theory of linear differential equations in Fréchet spaces. Strongly differential semigroups and their infinitesimal generators are characterized in chapter 3. These results are used in chapter 4 to study linear evolution equations (of hyperbolic or parabolic type). The main results of this thesis are contained in part 3. In chapter 5 two existence and uniqueness theorems for nonlinear ordinary differential equations in tame Fréchet spaces are proved. Theses results are applied in chapter 6 to nonlinear partial differential equations of first order.
67

Analytizitätseigenschaften gewichteter zentraler Pfade bei monotonen Komplementaritätsproblemen und ihre Ausnutzung / Analyticity properties of weighted central paths arising with monotone complementarity problems and their exploitation

Preiß, Martin January 2002 (has links) (PDF)
Die vorliegende Arbeit untersucht die Analytizitätseigenschaften unzulässiger Innerer-Punkte Pfade bei monotonen Komplementaritätsproblemen und diskutiert mögliche algorithmische Anwendungen. In Kapitel 2 werden einige matrixanalytische Konzepte und Resultate zusammengestellt, die für die Beweisführung in den folgenden Kapiteln benötigt werden. Kapitel 3 gibt eine genaue Definition der Begriffe "monotones lineares Komplementaritätsproblem" (LCP) bzw. "semidefinites monotones lineares Komplementaritätsproblem" (SDLCP) und zeigt die Grundidee hinter den Innere-Punkte-Verfahren zur Lösung solcher Probleme. Kapitel 4 beinhaltet die analytischen Hauptresultate für monotone Komplementaritätsprobleme. In Abschnitt 4.1 werden einige wohlbekannte Resultate über die Analytizitätseigenschaften unzulässiger Innerer-Punkte-Pfade für LCP's wiedergegeben. Diese werden in Abschnitt 4.2 auf den semidefiniten Fall übertragen. Unter der Annahme, dass das zugrundeliegende SDLCP eine strikt komplementäre Lösung besitzt, wird gezeigt, dass die Inneren-Punkte-Pfade sogar noch im Randpunkt analytisch sind. Kapitel 5 benutzt die Resultate aus Kapitel 4, um die lokal hohe Konvergenzordnung einer Langschrittmethode zur Lösung von SDLCP's zu zeigen. Kapitel 6 führt eine neue Methode zur Lösung von LCP's und SDLCP's mit Hilfe von Inneren-Punkte-Techniken ein. Dabei werden die Pfadfunktionen derart gewählt, dass alle Iterierten auf unzulässigen zentralen Pfaden liegen. Es wird globale und lokale Konvergenz des Verfahrens bewiesen. / This thesis investigates the analyticity properties of infeasible interior point paths arising with monotone complementarity problems and discusses possible algorithmic applications. Chapter 2 summarizes some matrix analytical concepts and results that are needed for the proofs in the following chapters. Chapter 3 defines the terms "monotone linear complementarity problem" (LCP) and "semidefinite monotone linear complementarity problem" (SDLCP) exactly and shows the basic concept behind interior point methods for solving them. Chapter 4 contains the main analytical results for monotone complementarity problems. After repeating some well-known results on the analyticity properties of infeasible interior point paths for LCP's in section 4.1 these results are extended to the semidefinite case in section 4.2. Under the assumption that the underlying SDLCP has a strictly complementary solution it is shown that the interior point paths are analytical even at the boundary point. Chapter 5 uses the results of chapter 4 to show the locally high order of convergence of a long step method for solving SDLCP's. Chapter 6 introduces a new method for solving LCP's and SDLCP's respectively using interior point techniques. Here, the path functions are chosen in such a way that all the iterates are lying on infeasible central paths. Global and local convergence proofs are given.
68

Homogeneous spaces with the cohomology of sphere products and compact quadrangles / Homogene Räume mit der Kohomologie von Sphärenprodukten und kompakte Vierecke

Bletz-Siebert, Oliver January 2002 (has links) (PDF)
We consider homogeneous spaces G/H with the same rational homotopy as a product of a 1-sphere and a (m+1)-sphere. We show that these spaces have also the rational cohomology of such a sphere product if H is connected and if the quotient has dimension m+2. Furthermore, we prove that if additionally the fundamental group of G/H is cyclic, then G/H is locally a product of a 1-torus and ofA/H, where A/H is a simply connected rational cohomology (m+1)-sphere (and hence classified). If H fails to be connected, then with U as the connected component of H the G-action on the covering space G/U of G/H has connected stabilizers, and the results apply to G/U. To show that under the assumptions above every natural number may be realized as the order of the group of connected components of H we calculate the cohomology of certain homogeneous spaces. We also determine the rational cohomology of the fibre bundle U-->G-->G/U if G/H meets the assumptions above. This is done by considering the respective Leray-Serre spectral sequence. The structure of the cohomology of U-->G-->G/U then gives a second proof for the structure of compact connected Lie groups acting transitively on spaces with the rational homotopy of a product of a 1-sphere and a (m+1)-sphere. Since a quotient of a homogeneous space with the same rational homotopy or cohomology as a product of a 1-sphere and a (m+1)-sphere is not simply connected, there often arises the question whether or not a considered fibre bundle or fibration is orientable. A large amount of space will therefore be given to the problem of showing that certain fibrations are orientable. For compact connected (m+2)-manifolds with cyclic fundamental groups and with the rational homotopy of a product of a 1-sphere and a (m+1)-sphere we show the following: if a connected Lie group acts transitively on the manifold, then the maximal compact subgroups are either transitive, or their orbits are simply connected rational cohomology spheres of codimension 1. Homogeneous spaces with the same rational cohomology or homotopy as a a product of a 1-sphere and a (m+1)-sphere play a role in the study of different types of geometrical objects. They appear for example as focal manifolds of isoparametric hypersurfaces with four distinct principal curvatures. Further examples of such spaces are the point spaces and the line spaces of compact connected generalized quadrangles. We determine the isometry groups of isoparametric hypersurfaces with 4 principal curvatures of multiplicities 1 and m which are transitive on the focal manifold with non-trivial fundamental group. Buildings were introduced by Jacques Tits to give interpretations of simple groups of Lie type. They are a far-reaching generalization of projective spaces, in particular a generalization of projective planes. There is another generalization of projective planes called generalized polygons. A projective plane is the same as a generalized triangle. The generalized polygons are also contained in the class of buildings: they are the buildings of rank 2. To compact quadrangles one can assign a pair of natural numbers called the topological parameters of the quadrangles. We treat the case k=1. It turns out that there are no other point-transitive compact connected Lie groups for (1,m)-quadrangles than the ones for the real orthogonal quadrangles. Furthermore, we solve the problem of three infinite series of group actions which Kramer left as open problems; there are no quadrangles with the homogeneous spaces in question as point spaces (up to maybe a finite number of small parameters in one of the three series). / Es werden homogene Räume G/H mit der rationalen Homotopie von Produkten von einer 1-Sphäre mit einer (m+1)-Sphäre untersucht. Die Ergebnisse werden auf kompakte Vierecke (das sind die sphärischen kompakten Tits-Gebäude vom Typ C2) und auf isoparametrische Hyperflächen angewandt. Wir zeigen, dass die obigen homogenen Räume auch die rationale Kohomologie des jeweiligen Sphärenprodukts haben, falls H zusammenhängend ist und der Quotient die Dimension m+2 besitzt. Die Kohomologie gewisser homogener Räume wird bestimmt, um zu zeigen, dass die Gruppe der Komponenten von H jede beliebige natürliche Zahl als Ordnung besitzen kann. Falls die Fundamentalgruppe von G/H zyklisch ist, dann ist G/H lokal von der Form Tx(A/H) mit einer eindimensionalen Torusgruppe T und einer homogenen einfach-zusammenhängenden rationalen (m+1)-Kohomologiesphäre A/H; letztere sind klassifiziert. Wir bestimmen mit Hilfe der Leray-Serre-Spektralsequenz auch die rationale Kohomologie des Faserbündels U-->G-->G/U für die Zusammenhangskomponente U von H. Ein Quotient mit der rationalen Homotopie eines Produktes einer 1-Sphäre und einer (m+1)-Sphäre ist nicht einfach zusammenhängend. Deshalb tritt häufig die Frage auf, ob gewisse Faserungen orientierbar sind. Diesem Bereich wird viel Raum gewidmet. Wirkt eine Liegruppe transitiv auf einer kompakten Mannigfaltigkeit mit endlicher Fundamentalgruppe, dann wirkt nach einem Ergebnis von Montgomery auch jede maximale kompakte Untergruppe noch transitiv. Dies ist im Allgemeinen falsch für unendliche Fundamentalgruppen. Aber hier wird gezeigt: Wirkt eine zusammenhängende Liegruppe transitiv auf einer kompakten (m+2)-dimensionalen Mannigfaltigkeit mit zyklischer Fundamentalgruppe und mit der rationalen Homotopie eines Produktes einer 1-Sphäre und einer (m+1)-Sphäre, dann sind die maximalen kompakten Untergruppen transitiv oder ihre Bahnen sind alle einfach zusammenhängende rationale (m+1)-Kohomologiesphären. Diese topologischen Ergebnisse werden auf zwei verschieden Arten von geometrischen Objekten angewandt, nämlich auf Fokalmannigfaltigkeiten isoparametrischer Hyperflächen und auf Punkträume kompakter verallgemeinerter Vierecke. Isoparametrische Hyperflächen in Sphären sind abgeschlossene Untermannigfaltigkeiten mit konstanten Hauptkrümmungen. Wir wenden unsere obigen Resultate an und bestimmen die transitiven isometrischen Wirkungen auf einer Fokalmannigfaltigkeit, falls es vier Hauptkrümmungen gibt und die Fokalmannigfaltigkeit die rationalen Homotopie eines Produktes einer 1-Sphäre mit einer (m+1)-Sphäre besitzt. Viele kompakte zusammenhängende Polygone gestatten eine transitive Wirkung ihrer Automorphismengruppe auf ihrem Punkt- oder Geradenraum. Wegen der Dualität der Rolle von Punkt- und Geradenraum genügt es Punkt-homogene Vierecke zu betrachten. Einem Punkt-homogenen kompakten zusammenhängenden Viereck lässt sich ein Paar (k,m) natürlicher Zahlen zuordnen, die topologischen Parameter des Viereck. Wir behandeln hier den Fall k=1. Es zeigt sich, dass es keine anderen Punkt-transitive Liegruppen gibt als diejenigen für die reellen orthogonalen Vierecke. Zusätzlich beweisen wir, dass es für drei bestimmte Serien von homogenen Räumen (für die die Frage, ob sie zu verallgemeinerten Vierecken gehören, ein offenes Problem war) keine entsprechenden Vierecke mit den homogenen Räumen als Punkträumen gibt.
69

Grundlagen der Differentialgeometrie

Meyer, Arnd, Steinbrecher, Andreas 30 November 2000 (has links) (PDF)
Vorlesungsscript zur Lehrveranstaltung ¨Differentialgeometrie¨ fuer Mathematiker, Lehramtsstudenten/Gymnasiallehrer Mathematik, Ingenieure und andere Interessenten. Dieses Vorlesungsscript gibt Einblicke in die Grundlagen der Vektorrechnung, der Kurventheorie und der Flaechentheorie im zwei- bzw. dreidimensionalen Raum. Die entwickelten Theorien werden durch Anwendungsbeispiele untermauert. Weiterhin ist eine Formelsammlung zur Kurven- und Flaechentheorie enthalten.
70

Algebraic and Arithmetic Properties of Graph Spectra / Algebraische und Arithmetische Eigenschaften von Graph Spektren

Mönius, Katja January 2021 (has links) (PDF)
In the present thesis we investigate algebraic and arithmetic properties of graph spectra. In particular, we study the algebraic degree of a graph, that is the dimension of the splitting field of the characteristic polynomial of the associated adjacency matrix over the rationals, and examine the question whether there is a relation between the algebraic degree of a graph and its structural properties. This generalizes the yet open question ``Which graphs have integral spectra?'' stated by Harary and Schwenk in 1974. We provide an overview of graph products since they are useful to study graph spectra and, in particular, to construct families of integral graphs. Moreover, we present a relation between the diameter, the maximum vertex degree and the algebraic degree of a graph, and construct a potential family of graphs of maximum algebraic degree. Furthermore, we determine precisely the algebraic degree of circulant graphs and find new criteria for isospectrality of circulant graphs. Moreover, we solve the inverse Galois problem for circulant graphs showing that every finite abelian extension of the rationals is the splitting field of some circulant graph. Those results generalize a theorem of So who characterized all integral circulant graphs. For our proofs we exploit the theory of Schur rings which was already used in order to solve the isomorphism problem for circulant graphs. Besides that, we study spectra of zero-divisor graphs over finite commutative rings. Given a ring \(R\), the zero-divisor graph over \(R\) is defined as the graph with vertex set being the set of non-zero zero-divisors of \(R\) where two vertices \(x,y\) are adjacent if and only if \(xy=0\). We investigate relations between the eigenvalues of a zero-divisor graph, its structural properties and the algebraic properties of the respective ring. / In der vorliegenden Dissertation untersuchen wir algebraische und arithmetische Eigenschaften von Graph Spektren. Insbesondere studieren wir den algebraischen Grad eines Graphen, d.h. die Dimension des Zerfällungskörpers des charakteristischen Polynoms der zugehörigen Adjazenzmatrix über den rationalen Zahlen, und beschäftigen uns mit der Frage, ob es einen Zusammenhang zwischen dem algebraischen Grad eines Graphen und seinen strukturellen Eigenschaften gibt. Dies verallgemeinert die bis heute noch offene Fragestellung "Welche Graphen haben ganzzahliges Spektrum?", welche 1974 von Harary und Schwenk aufgeworfen wurde. Wir geben einen Überblick über verschiedene Graphprodukte, da diese oftmals hilfreich sind bei der Untersuchung von Graph Spektren, und konstruieren damit Familien von integralen Graphen. Außerdem stellen wir einen Zusammenhang zwischen dem Diameter, dem maximalen Eckengrad und dem algebraischen Grad von Graphen vor, und konstruieren eine potenzielle Familie von Graphen, welche alle maximalen algebraischen Grad haben. Zudem bestimmen wir den algebraischen Grad zirkulärer Graphen und finden neue Kriterien für Isospektralität solcher Graphen. Darüber hinaus lösen wir das inverse Galois Problem für zirkuläre Graphen, indem wir zeigen, dass jede endliche abelsche Erweiterung der rationalen Zahlen Zerfällungskörper eines zirkulären Graphen ist. Diese Resultate verallgemeinern einen Satz von So, in dem sämtliche integrale zirkuläre Graphen charakterisiert werden. Für unsere Beweise verwenden wir die Theorie der Schur Ringe, die bereits verwendet wurde, um das Isomorphieproblem für zirkuläre Graphen zu lösen. Zu guter Letzt untersuchen wir Spektren von Nullteilergraphen über kommutativen Ringen. Zu einem gegebenen Ring \(R\) ist der zugehörige Nullteilergraph über \(R\) definiert als der Graph, dessen Eckenmenge den Nullteilern von \(R\) entspricht, und in dem je zwei Ecken \(x,y\) benachbart sind, wenn \(xy=0\) gilt. Wir studieren Zusammenhänge zwischen den Eigenwerten von Nullteilergraphen, deren strukturellen Eigenschaften und den algebraischen Eigenschaften der entsprechenden Ringe.

Page generated in 0.036 seconds