• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 241
  • 50
  • 45
  • Tagged with
  • 334
  • 334
  • 139
  • 139
  • 139
  • 72
  • 36
  • 35
  • 34
  • 34
  • 32
  • 31
  • 30
  • 30
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Annual Report 2009 - Institute of Safety Research

Weiß, F.-P. January 2010 (has links)
The Institute of Safety Research (ISR) is one of the six Research Institutes of Forschungszentrum Dresden-Rossendorf e.V. (FZD), which is a member institution of the Wissenschaftsgemeinschaft Gottfried Wilhelm Leibniz (Leibnizgemeinschaft). Together with the Institutes of Radiochemistry and Radiation Physics, ISR implements the research programme „Nuclear Safety Research“, which is one of the three scientific programmes of FZD. The programme includes two main topics, i. e. “Safety Research for Radioactive Waste Disposal” and “Safety Research for Nuclear Reactors”.
102

Preliminary investigations on high energy electron beam tomography

Bärtling, Yves, Hoppe, Dietrich, Hampel, Uwe January 2010 (has links)
In computed tomography (CT) cross-sectional images of the attenuation distribution within a slice are created by scanning radiographic projections of an object with a rotating X-ray source detector compound and subsequent reconstruction of the images from these projection data on a computer. CT can be made very fast by employing a scanned electron beam instead of a mechanically moving X-ray source. Now this principle was extended towards high-energy electron beam tomography with an electrostatic accelerator. Therefore a dedicated experimental campaign was planned and carried out at the Budker Insitute of Nuclear Physics (BINP), Novosibirsk. There we investigated the capabilities of BINP’s accelerators as an electron beam generating and scanning unit of a potential high-energy electron beam tomography device. The setup based on a 1 MeV ELV-6 (BINP) electron accelerator and a single detector. Besides tomographic measurements with different phantoms, further experiments were carried out concerning the focal spot size and repeat accuracy of the electron beam as well as the detector’s response time and signal to noise ratio.
103

Annual Report 2011 - Institute of ion Beam Physics and Materials Research

Cordeiro, A. L., Helm, M. January 2012 (has links)
The first year of membership of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in the Helmholtz Association of German Research Centers (HGF) was a year of many changes also for the Institute of Ion Beam Physics and Materials Research (IIM). The transition period, however, is not yet over, since the full integration of the Center into the HGF will only be completed in the next period of the so-called program-oriented funding (POF). This funding scheme addresses the six core research fields identified by the Helmholtz Association (Energy; Earth and Environment; Health; Key Technologies; Structure of Matter; Aeronautics, Space and Transport) to deal with the grand challenges faced by society, science and industry. Since the Institute has strong contributions to both core fields “Key Technologies” and “Structure of Matter”, intense discussions were held amongst the leading scientists of the Institute, across the Institutes of the HZDR, and finally with leading scientists of other Helmholtz centers, to determine the most appropriate classification of the Institute’s research. At the end we decided to establish ourselves in Structure of Matter, the core field in which most of the large-scale photon, neutron and ion facilities in Germany are located. As a consequence, the Ion Beam Center (IBC) of the Institute submitted an application to become a HGF recognized large-scale facility, providing more than 50% of its available beam time to external users. This application perfectly reflects the development of the IBC over more than a decade as a European Union funded infrastructure in the framework of the projects “Center for Application of Ion Beams in Materials Research (AIM)” (1998-2000, 2000-2003, 2006-2010) and subsequently as the coordinator of the integrated infrastructure initiative (I3) “Support of Public and Industrial Research using Ion Beam Technology (SPIRIT)” (2009-2013). Another part of the Institute’s activities is dedicated to exploit the infrared/THz free-electron laser at the 40 MeV superconducting electron accelerator ELBE for condensed matter research. This facility is also open to external users and funded by the European Union.
104

Annual Report 2009/10 Rossendorf Beamline at ESRF (ROBL-CRG)

Scheinost, Andreas, Baehtz, Carsten January 2011 (has links)
The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 7th report covers the period from January 2009 to December 2010. In these two years, 67 peer- reviewed papers have been published based on experiments done at the beamline, more than in any biannual period before. Six highlight reports have been selected for this report to demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH). The beamtime was more heavily overbooked than ever before, with an acceptance rate of only 25% experiments. We would like to thank our external proposal review members, Prof. Andre Maes (KU Leuven, Belgium), Prof. Laurent Charlet (UJF Grenoble, France), Dr. Andreas Leinweber (MPI Metallforschung, Stuttgart, Germany), Prof. David Rafaja (TU Bergakademie Freiberg, Germany), Prof. Dirk Meyer (TU Dresden, Germany), who evaluated the inhouse proposals in a thorough manner, thereby ensuring that beamtime was distributed according to scientific merit. The period was not only characterized by very successful science, but also by intense work on the optics upgrade. In spring 2009, a workshop was held at ROBL, assembling beamline experts from German, Spanish and Swiss synchrotrons, to evaluate the best setup for the new optics. These suggestions was used to prepare the call for tender published in July 2009. From the tender acceptance in November 2009 on, a series of design review meetings and factory acceptance tests followed. Already in July 2010, the first piece of equipment was delivered, the new double-crystal, double-multilayer monochromator. The disassembly of the old optics components started end of July, 2011, followed by the installation of the new components. As of December 2011, the new optics have seen the first test beam and thorough hot commissioning will be continued until May 2012, since the ESRF shuts down for a major upgrade from December 2011 to April 2012. We expect that we will be ready for user operation from June 2012 on, with a better beamline than ever. The beamline staff would like to thank all partners, research groups and organizations who supported the beamline during the last 24 months. Special thanks to the FZD management, the CRG office of the ESRF with Axel Kaprolat as liaison officer and Eric Dettona as lead technician, and to the ESRF safety group members, Paul Berkvens, Patrick Colomp and Yann Pira.
105

Precise nuclear physics for the sun

Bemmerer, Daniel January 2012 (has links)
For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth’s atmosphere in space, have succeeded in observing astronomical objects that are billions of lightyears away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun’s inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth’s climate may strongly affect the living conditions in a number of densely populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth’s atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth’s atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth’s climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astrophysics (LUNA) 0.4MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.
106

Entwicklung und Validierung von Modellen für Blasenkoaleszenz und -zerfall

Liao, Y., Lucas, D. January 2013 (has links)
Ein neues, verallgemeinertes Modell für Blasenkoaleszenz und –zerfall wurde entwickelt. Es basiert auf physikalischen Überlegungen und berücksichtigt verschiedene Mechanismen, die zu Blasenkoaleszenz und –zerfall führen können. In einer ausführlichen Literaturrecherche wurden zunächst die verfügbaren Modelle zusammengestellt und analysiert. Es zeigte sich, dass viele widersprüchliche Modelle veröffentlicht wurden. Keins dieser Modelle erlaubt die Vorhersage der Entwicklung der Blasengrößenverteilungen entlang einer Rohrströmung für einen breiten Bereich an Kombinationen von Volumenströmen der Gas- und der Flüssigphase. Das neue Modell wurde ausführlich in einem vereinfachten Testsolver untersucht. Dieser erfasst zwar nicht alle Einzelheiten einer sich entlang des Rohres entwickelten Strömungen, erlaubt aber im Gegensatz zu den CFD-Simulationen eine Vielzahl von Variationsrechnungen zur Untersuchung des Einflusses einzelner Größen und Modelle. Koaleszenz und Zerfall kann nicht getrennt von anderen Phänomenen und Modellen, die diese widerspiegeln, betrachtet werden. Es bestehen enge Wechselwirkungen mit der Turbulenz der Flüssigphase und dem Impulsaustausch zwischen den Phasen. Da die Dissipationsrate der turbulenten kinetischen Energie ein direkter Eingangsparameter für das neue Modell ist, wurde die Turbulenzmodellierung besonders genau untersucht. Zur Validierung des Modells wurde eine TOPFLOW-Experimentalserie zur Luft-Wasser-Strömungen in einem 8 m langen DN200-Rohr genutzt. Die Daten zeichnen sich durch eine hohe Qualität aus und wurden im Rahmen des TOPFLOW-IIVorhabens mit dem Ziel eine Grundlage für die hier vorgestellten Arbeiten zu liefern, gewonnen. Die Vorhersage der Entwicklung der Blasengrößenverteilung entlang des Rohrs konnte im Vergleich zu den bisherigen Standardmodellen für Blasenkoaleszenz und -zerfall in CFX deutlich verbessert werden. Einige quantitative Abweichungen bleiben aber bestehen. Die vollständigen Modellgleichungen sowie eine Implementierung über „User-FORTRAN“ in CFX stehen zur Verfügung und können für weitere Arbeiten zur Simulation polydisperser Blasenströmungen genutzt werden.
107

Strömungsprofilmessungen mittels PIV-Verfahren an einem Stabbündel

Franz, R., Hampel, U. January 2013 (has links)
Umströmte Rohr- bzw. Stabbündel sind als Übertrager von Wärmeenergie in einem breiten Spektrum von Anwendungsgebieten zu finden. Beispiele sind Heizkörper, Kühlaggregate, Heizpatronen, industrielle Wärmetauscher und Brennelemente in Kernreaktoren. Für jede dieser Anwendungen besteht die Anforderung, die Wärmeübertragung an den Wärmeübertragerflächen zu optimieren. Dabei besteht eine enge Kopplung zwischen Wärmetransport und Strömungsstruktur. Eine besonders effiziente Form der Wärmeübertragung ist die Verdampfung. Diese wird unter anderem bei Brennelementen in Druckwasserreaktoren genutzt. Hier siedet das Kühlwasser an der Brennstaboberfläche. Durch Kondensation der Dampfblasen in der unterkühlten Kernströmung wird die Wärme dann effizient in die Flüssigphase übertragen. Durch die hohe Verdampfungsenthalpie des Wassers wird beim Strömungssieden ein viel höherer Wärmestrom in das Kühlwasser übertragen, als bei rein einphasig-konvektivem Wärmetransport. Sicherheitstechnisch relevant für Brennelemente in Leichtwasserreaktoren ist der Übergang vom Blasensieden zum Filmsieden (kritischer Wärmestrom). Dieser muss unter allen Umständen vermieden werden, um die Integrität der Brennstabhüllen zu gewährleisten, die bei Überschreiten der kritischen Heizflächenbelastung aufschmelzen bzw. reißen können. Aus diesem Grund werden im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten Projektes (Förderkennzeichen 02NUK010A) numerische Strömungsberechnungsmodelle entwickelt, die bei der Beschreibung und numerischen Behandlung der Siedephänomene helfen sollen. Zur Validierung dieser Modelle anhand von Experimenten wurde ein Strömungskanal konstruiert, in dem ein vertikales Stabbündel von einem Kältemittel (RC318) aufwärtig durchströmt wird. Der Versuchsstand ist so konzipiert, dass ein optischer und messtechnischer Zugang zu den umströmten Einbauten gegeben ist. Damit sind Messungen in Zweiphasenströmungen ebenso möglich, wie Untersuchungen zur einphasigen Durchströmung. Für später erfolgende Zweiphasen-Experimente mit Stabbeheizung wurden zunächst Voruntersuchungen zur einphasigen Durchströmungen durchgeführt, welche insbesondere Aufschluss über die Homogenität der Strömung in den Unterkanälen sowie die Existenz von Querströmungen geben sollten. Als Messverfahren dafür wurde die Particle Image Velocimetry (PIV) ausgewählt, welche es ermöglicht, zweidimensionale Strömungsfelder aufzuzeichnen. Die experimentellen Studien erfolgten am Optical Multi-Phase Flow Research Laboratory des Nuclear Engineering Department der Texas A&M University in College Station, USA. Die Untersuchungen wurden für drei Volumenstromraten durchgeführt. Der vorliegende Bericht umfasst die Beschreibung des Versuchsstandes und der Messmethodik, eine Vorstellung des Auswerteverfahrens und relevanter Ergebnisse sowie eine Fehlerbetrachtung.
108

Spectral History Modeling in the Reactor Dynamics Code DYN3D

Bilodid, Yurii January 2014 (has links)
A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the proposed method is the use of the plutonium-239 concentration as the spectral history indicator. The method was implemented in the reactor dynamics code DYN3D and provides a correction for nodal cross sections according to the local spectral history. A verification of the new method was performed by single-assembly calculations in comparison with results of the lattice code HELIOS. The application of plutonium-based history correction significantly improves the cross section estimation accuracy both for UOX and MOX fuel, with quadratic and hexagonal geometry. The new method was applied to evaluate the influence of history effects on full-core calculation results. Analysis of a PWR equilibrium fuel cycle has shown a significant effect on the axial power distribution during a whole cycle, which causes axial temperature and burnup redistributions. The observed neutron flux redistribution improves neutron economy, so the fuel cycle is longer than in calculations without history corrections. Analyses of hypothetical control rod ejection accidents have shown a minor influence of history effects on the transient course and safety relevant parameters. / Eine neue Methode zur Modellierung der Spektralgeschichte als Bestandteil von Kernreaktorberechnungen wurde in dieser Dissertation entwickelt und verifiziert. Die spektrale Abbrandgeschichte hat praktische Bedeutung für die Brennstoffeigenschaften, die nicht nur von der Höhe des Abbrandwertes, sondern auch vom lokalen Neutronenspektrum während des Abbrandprozesses abhängen. Die Grundidee der vorgeschlagenen Methode besteht in der Nutzung der lokalen Plutonium-239-Konzentration als quantitativen Indikator für die spektrale Abbrandgeschichte. Die Methode wurde in das Reaktordynamikprogramm DYN3D implementiert; sie gewährleistet eine Korrektur der nodalen Wirkungsquerschnitte gemäß der lokalen spektralen Abbrandgeschichte. Eine Verifikation der neuen Methode wurde mit Einzelbrennelementberechnungen im Vergleich zu Ergebnissen des Zellabbrandprogramms HELIOS durchgeführt. Die Korrektur auf der Basis der Plutoniumkonzentration verbessert die Genauigkeit der Wirkungsquerschnitte signifikant, sowohl für UOX als auch für MOX, in quadratischer und hexagonaler Geometrie. Die neue Methode wurde für die Bestimmung des Einflusses der spektralen Abbrandgeschichte auf die Modellierung ganzer Reaktorkerne angewandt. Die Analyse eines DWRGleichgewichtszyklus zeigt eine signifikante Auswirkung auf die axiale Leistungsverteilung während eines ganzen Zyklus. Über die axiale Temperaturverteilung (Rückkopplung) entsteht wiederum eine Rückwirkung auf die Abbrandverteilung selbst. Die beobachtete modifizierte Neutronenflussverteilung verbessert die Neutronenökonomie, sodass der Brennstoffzyklus länger wird, verglichen mit Berechnungen ohne Berücksichtigung der Abbrandgeschichte. Analysen von hypothetischen Stabauswurfszenarien ergaben einen nur geringen Einfluss der Abbrandgeschichte auf Transientenverlauf und sicherheitsrelevante Parameter.
109

Bestimmung der elektromagnetischen Dipolstärkeverteilung in mittelschweren Atomkernen mittels Kernresonanzfluoreszenz

Massarczyk, Ralph January 2014 (has links)
Im Rahmen der Arbeit wurden Experimente aus den Jahren 2008/09 für die Kerne 86Kr und 136Ba analysiert. Zur Auswertung mussten neben Photonenfluss- und Effizienzbestimmung auch Simulationen durchgeführt werden, welche die experimentellen Bedingungen widerspiegeln. Nicht am Kern gestreute Ereignisse und Detektorantwortfunktionen wurden mit Hilfe des Programmpaketes GEANT4 simuliert, um in den gemessenen Daten berücksichtigt zu werden. Daraus zeigt sich, dass neben diskreten Energiezuständen auch ein beachtlicher Teil des ermittelten Anregungsquerschnitts in einer Art Quasikontinuum aus unauflösbaren Peaks liegt. Die ermittelten Wirkungsquerschnitte werden mit Hilfe eines statistischen Ansatzes auf Verzweigung in mögliche Zerfallskanäle und auf Fütterung durch Zustände höherer Energie korrigiert.
110

Positron Emission Tomography for the dose monitoring of intra-fractionally moving Targets in ion beam therapy

Stützer, Kristin January 2014 (has links)
Ion beam therapy (IBT) is a promising treatment option in radiotherapy. The characteristic physical and biological properties of light ion beams allow for the delivery of highly tumour conformal dose distributions. Related to the sparing of surrounding healthy tissue and nearby organs at risk, it is feasible to escalate the dose in the tumour volume to reach higher tumour control and survival rates. Remarkable clinical outcome was achieved with IBT for radio-resistant, deep-seated, static and well fixated tumour entities. Presumably, more patients could benefit from the advantages of IBT if it would be available for more frequent tumour sites. Those located in the thorax and upper abdominal region are commonly subjected to intra-fractional, respiration related motion. Different motion compensated dose delivery techniques have been developed for active field shaping with scanned pencil beams and are at least available under experimental conditions at the GSI Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany. High standards for quality assurance are required in IBT to ensure a safe and precise dose application. Both underdosage in the tumour and overdosage in the normal tissue might endanger the treatment success. Since minor unexpected anatomical changes e.g. related to patient mispositioning, tumour shrinkage or tissue swelling could already lead to remarkable deviations between planned and delivered dose distribution, a valuable dose monitoring system is desired for IBT. So far, positron emission tomography (PET) is the only in vivo, in situ and non-invasive qualitative dose monitoring method applied under clinical conditions. It makes use of the tissue autoactivation by nuclear fragmentation reactions occurring along the beam path. Among others, +-emitting nuclides are generated and decay according to their half-life under the emission of a positron. The subsequent positron-electron annihilation creates two 511 keV photons which are emitted in opposite direction and can be detected as coincidence event by a dedicated PET scanner. The induced three-dimensional (3D) +- activity distribution in the patient can be reconstructed from the measured coincidences. Conclusions about the delivered dose distribution can be drawn indirectly from a comparison between two +-activity distributions: the measured one and an expected one generated by a Monte-Carlo simulation. This workflow has been proven to be valuable for the dose monitoring in IBT when it was applied for about 440 patients, mainly suffering from deep-seated head and neck tumours that have been treated with 12C ions at GSI. In the presence of intra-fractional target motion, the conventional 3D PET data processing will result in an inaccurate representation of the +-activity distribution in the patient. Fourdimensional, time-resolved (4D) reconstruction algorithms adapted to the special geometry of in-beam PET scanners allow to compensate for the motion related blurring artefacts. Within this thesis, a 4D maximum likelihood expectation maximization (MLEM) reconstruction algorithm has been implemented for the double-head scanner Bastei installed at GSI. The proper functionality of the algorithm and its superior performance in terms of suppressing motion related blurring artefacts compared to an already applied co-registration approach has been demonstrated by a comparative simulation study and by dedicated measurements with moving radioactive sources and irradiated targets. Dedicated phantoms mainly made up of polymethyl methacrylate (PMMA) and a motion table for regular one-dimensional (1D) motion patterns have been designed and manufactured for the experiments. Furthermore, the general applicability of the 4D MLEM algorithm for more complex motion patterns has been demonstrated by the successful reduction of motion artefacts from a measurement with rotating (two-dimensional moving) radioactive sources. For 1D cos2 and cos4 motion, it has been clearly illustrated by systematic point source measurements that the motion influence can be better compensated with the same number of motion phases if amplitudesorted instead of time-sorted phases are utilized. In any case, with an appropriate parameter selection to obtain a mean residual motion per phase of about half of the size of a PET crystal size, acceptable results have been achieved. Additionally, it has been validated that the 4D MLEM algorithm allows to reliably access the relevant parameters (particle range and lateral field position and gradients) for a dose verification in intra-fractionally moving targets even from the intrinsically low counting statistics of IBT-PET data. To evaluate the measured +-activity distribution, it should be compared to a simulated one that is expected from the moving target irradiation. Thus, a 4D version of the simulation software is required. It has to emulate the generation of +-emitters under consideration of the intra-fractional motion, their decay at motion state dependent coordinates and to create listmode data streams from the simulated coincidences. Such a revised and extended version that has been compiled for the special geometry of the Bastei PET scanner is presented within this thesis. The therapy control system provides information about the exact progress of the motion compensated dose delivery. This information and the intra-fractional target motion needs to be taken into account for simulating realistic +-activity distributions. A dedicated preclinical phantom simulation study has been performed to demonstrate the correct functionality of the 4D simulation program and the necessity of the additional, motionrelated input parameters. Different to the data evaluation for static targets, additional effort is required to avoid a potential misleading interpretation of the 4D measured and simulated +-activity distributions in the presence of deficient motion mitigation or data processing. It is presented that in the presence of treatment errors the results from the simulation might be in accordance to the measurement although the planned and delivered dose distribution are different. In contrast to that, deviations may occur between both distributions which are not related to anatomical changes but to deficient 4D data processing. Recommendations are given in this thesis to optimize the 4D IBT-PET workflow and to prevent the observer from a mis-interpretation of the dose monitoring data. In summary, the thesis contributes on a large scale to a potential future application of the IBT-PET monitoring for intra-fractionally moving target volumes by providing the required reconstruction and simulation algorithms. Systematic examinations with more realistic, multi-directional and irregular motion patterns are required for further improvements. For a final rating of the expectable benefit from a 4D IBT-PET dose monitoring, future investigations should include real treatment plans, breathing curves and 4D patient CT images.

Page generated in 0.0322 seconds