141 |
TOPFLOW-Experiments on Direct Condensation and Bubble EntrainmentSeidel, Tobias, Lucas, Dirk, Beyer, Matthias 16 February 2016 (has links) (PDF)
Direct Contact Condensation between steam and water as well as bubble entrainment below the water surface play an important role in different accident scenarios for light water reactors. One example is the emergency core cooling water injection into a two-phase mixture. It has to be considered for example to evaluate potential pressurized thermal shock phenomena.
This report documents experiments conducted in flat basin inside the TOPFLOW pressure chamber aiming on the generation of a database useful for CFD model development and validation. It comprises 3 different setups: condensation at a stratified flow of sub-cooled water, condensation at a sub-cooled water jet and a combination of both phenomena with steam bubble entrainment. The documentation includes all details on the experimental set up, on experimental conditions (experimental matrices), on the conduction of the experiments, on measuring techniques used and on data evaluation procedures. In addition, selected results are presented.
|
142 |
Terahertz Near-field Investigation of a Plasmonic GaAs SuperlensFehrenbacher, Markus 26 April 2016 (has links) (PDF)
This work presents the first demonstration of a semiconductor based plasmonic near-field superlens, utilizing highly doped GaAs to generate infrared optical images with a spatial resolution beyond the difraction limit. Being easily transferable to other semiconductor materials, the concept described in this thesis can be exploited to realize spectrally adjustable superlenses in a wide spectral range. The idea of superlensing has been introduced theoretically in 2000, followed by numerous publications including experimental studies. The effect initiated great interest in optics, since in contrast to difraction limited conventional optical microscopy it enables subwavelength resolved imaging by reconstructing the evanescent waves emerging from an object. With techniques like scanning near-field optical microscopy (SNOM) and stimulated emission depletion (STED) being already successfully established to overcome the conventional restrictions, the concept of superlensing provides a novel, different route towards high resolution. Superlensing is a resonant phenomenon, relying either on the excitation of surface plasmons in metallic systems or on phonon resonances in dielectric structures. In this respect a superlens based on doped semiconductor benefits from the potential to be controlled in its operational wavelength by shifting the plasma frequency through adjustment of the free carrier concentration.
For a proof of principle demonstration, we investigate a superlens consisting of a highly n-doped GaAs layer (n = 4 x 10^18 cm-3) sandwiched between two intrinsic layers. Recording near-field images of subwavelength sized gold stripes through the trilayer structure by means of SNOM in combination with a free-electron laser, we observe both enhanced signal and improved spatial resolution at radiation wavelengths close to l = 22 µm, which is in excellent agreement with simulations based on the Drude-Lorentz model of free electrons. Here, comparative investigations of a purely intrinsic reference sample confirm that the effect is mediated by the charge carriers within the doped layer. Furthermore, slightly differently doped samples provide indications for the expected spectral shift of the resonance. According to our calculations, the wavelength range to be exploited by n-GaAs based superlenses reaches far into the terahertz region, whereas other semiconductor materials are required to explore the near infrared.
|
143 |
Data compilation and evaluation for U(IV) and U(VI) for the Thermodynamic Reference Database THEREDARichter, Anke, Bok, Frank, Brendler, Vinzenz 16 February 2016 (has links) (PDF)
THEREDA (Thermodynamic Reference Database) is a collaborative project, which has been addressed this challenge. The partners are Helmholtz-Zentrum Dresden-Rossendorf, Karlsruhe Institute of Technology (KIT-INE), Gesellschaft für Anlagen- und Reaktorsicherheit Braunschweig mbH (GRS), TU Bergakademie Freiberg (TUBAF) and AF-Consult Switzerland AG (Baden, Switzerland). The aim of the project is the establishment of a consistent and quality assured database for all safety relevant elements, temperature and pressure ranges, with its focus on saline systems. This implied the use of the Pitzer approach to compute activity coefficients suitable for such conditions. Data access is possible via commonly available internet browsers under the address http://www.thereda.de.
One part of the project - the data collection and evaluation for uranium – was a task of the Helmholtz-Zentrum Dresden-Rossendorf. The aquatic chemistry and thermodynamics of U(VI) and U(IV) is of great importance for geochemical modelling in repository-relevant systems. The OECD/NEA Thermochemical Database (NEA TDB) compilation is the major source for thermodynamic data of the aqueous and solid uranium species, even though this data selection does not utilize the Pitzer model for the ionic strength effect correction. As a result of the very stringent quality demands, the NEA TDB is rather restrictive and therefore incomplete for extensive modelling calculations of real systems. Therefore, the THEREDA compilation includes additional thermodynamic data of solid secondary phases formed in the waste material, the backfill and the host rock, though falling into quality assessment (QA) categories of lower accuracy. The data review process prefers log K values from solubility experiments (if available) to those calculated from thermochemical data.
|
144 |
Spectral History Modeling in the Reactor Dynamics Code DYN3DBilodid, Yurii 11 June 2014 (has links) (PDF)
A new method of treating spectral history effects in reactor core calculations was developed and verified in this dissertation. The nature of history effects is a dependence of fuel properties not only on the burnup, but also on the local spectral conditions during burnup. The basic idea of the proposed method is the use of the plutonium-239 concentration as the spectral history indicator. The method was implemented in the reactor dynamics code DYN3D and provides a correction for nodal cross sections according to the local spectral history.
A verification of the new method was performed by single-assembly calculations in comparison with results of the lattice code HELIOS. The application of plutonium-based history correction significantly improves the cross section estimation accuracy both for UOX and MOX fuel, with quadratic and hexagonal geometry.
The new method was applied to evaluate the influence of history effects on full-core calculation results. Analysis of a PWR equilibrium fuel cycle has shown a significant effect on the axial power distribution during a whole cycle, which causes axial temperature and burnup redistributions. The observed neutron flux redistribution improves neutron economy, so the fuel cycle is longer than in calculations without history corrections. Analyses of hypothetical control rod ejection accidents have shown a minor influence of history effects on the transient course and safety relevant parameters. / Eine neue Methode zur Modellierung der Spektralgeschichte als Bestandteil von Kernreaktorberechnungen wurde in dieser Dissertation entwickelt und verifiziert. Die spektrale Abbrandgeschichte hat praktische Bedeutung für die Brennstoffeigenschaften, die nicht nur von der Höhe des Abbrandwertes, sondern auch vom lokalen Neutronenspektrum während des Abbrandprozesses abhängen. Die Grundidee der vorgeschlagenen Methode besteht in der Nutzung der lokalen Plutonium-239-Konzentration als quantitativen Indikator für die spektrale Abbrandgeschichte. Die Methode wurde in das Reaktordynamikprogramm DYN3D implementiert; sie gewährleistet eine Korrektur der nodalen Wirkungsquerschnitte gemäß der lokalen spektralen Abbrandgeschichte.
Eine Verifikation der neuen Methode wurde mit Einzelbrennelementberechnungen im Vergleich zu Ergebnissen des Zellabbrandprogramms HELIOS durchgeführt. Die Korrektur auf der Basis der Plutoniumkonzentration verbessert die Genauigkeit der Wirkungsquerschnitte signifikant, sowohl für UOX als auch für MOX, in quadratischer und hexagonaler Geometrie.
Die neue Methode wurde für die Bestimmung des Einflusses der spektralen Abbrandgeschichte auf die Modellierung ganzer Reaktorkerne angewandt. Die Analyse eines DWRGleichgewichtszyklus zeigt eine signifikante Auswirkung auf die axiale Leistungsverteilung während eines ganzen Zyklus. Über die axiale Temperaturverteilung (Rückkopplung) entsteht wiederum eine Rückwirkung auf die Abbrandverteilung selbst. Die beobachtete modifizierte Neutronenflussverteilung verbessert die Neutronenökonomie, sodass der Brennstoffzyklus länger wird, verglichen mit Berechnungen ohne Berücksichtigung der Abbrandgeschichte. Analysen von hypothetischen Stabauswurfszenarien ergaben einen nur geringen Einfluss der Abbrandgeschichte auf Transientenverlauf und sicherheitsrelevante Parameter.
|
145 |
Precise nuclear physics for the sunBemmerer, Daniel 08 May 2013 (has links) (PDF)
For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him.
Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests.
The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth’s atmosphere in space, have succeeded in observing astronomical objects that are billions of lightyears away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation.
The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun’s inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions.
The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth’s climate may strongly affect the living conditions in a number of densely populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth’s atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth’s atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth’s climate. However, such effects cannot be excluded, either, making it necessary to study the Sun.
The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun.
In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astrophysics (LUNA) 0.4MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.
|
146 |
Entwicklung und Validierung von Modellen für Blasenkoaleszenz und -zerfallLiao, Y., Lucas, D. 22 May 2013 (has links) (PDF)
Ein neues, verallgemeinertes Modell für Blasenkoaleszenz und –zerfall wurde entwickelt. Es basiert auf physikalischen Überlegungen und berücksichtigt verschiedene Mechanismen, die zu Blasenkoaleszenz und –zerfall führen können. In einer ausführlichen Literaturrecherche wurden zunächst die verfügbaren Modelle zusammengestellt und analysiert. Es zeigte sich, dass viele widersprüchliche Modelle veröffentlicht wurden. Keins dieser Modelle erlaubt die Vorhersage der Entwicklung der Blasengrößenverteilungen entlang einer Rohrströmung für einen breiten Bereich an Kombinationen von Volumenströmen der Gas- und der Flüssigphase.
Das neue Modell wurde ausführlich in einem vereinfachten Testsolver untersucht. Dieser erfasst zwar nicht alle Einzelheiten einer sich entlang des Rohres entwickelten Strömungen, erlaubt aber im Gegensatz zu den CFD-Simulationen eine Vielzahl von Variationsrechnungen zur Untersuchung des Einflusses einzelner Größen und Modelle. Koaleszenz und Zerfall kann nicht getrennt von anderen Phänomenen und Modellen, die diese widerspiegeln, betrachtet werden. Es bestehen enge Wechselwirkungen mit der Turbulenz der Flüssigphase und dem Impulsaustausch zwischen den Phasen. Da die Dissipationsrate der turbulenten kinetischen Energie ein direkter Eingangsparameter für das neue Modell ist, wurde die Turbulenzmodellierung besonders genau untersucht.
Zur Validierung des Modells wurde eine TOPFLOW-Experimentalserie zur Luft-Wasser-Strömungen in einem 8 m langen DN200-Rohr genutzt. Die Daten zeichnen sich durch eine hohe Qualität aus und wurden im Rahmen des TOPFLOW-IIVorhabens mit dem Ziel eine Grundlage für die hier vorgestellten Arbeiten zu liefern, gewonnen. Die Vorhersage der Entwicklung der Blasengrößenverteilung entlang des Rohrs konnte im Vergleich zu den bisherigen Standardmodellen für Blasenkoaleszenz und -zerfall in CFX deutlich verbessert werden. Einige quantitative Abweichungen bleiben aber bestehen.
Die vollständigen Modellgleichungen sowie eine Implementierung über „User-FORTRAN“ in CFX stehen zur Verfügung und können für weitere Arbeiten zur Simulation polydisperser Blasenströmungen genutzt werden.
|
147 |
Strömungsprofilmessungen mittels PIV-Verfahren an einem StabbündelFranz, R., Hampel, U. 22 May 2013 (has links) (PDF)
Umströmte Rohr- bzw. Stabbündel sind als Übertrager von Wärmeenergie in einem breiten Spektrum von Anwendungsgebieten zu finden. Beispiele sind Heizkörper, Kühlaggregate, Heizpatronen, industrielle Wärmetauscher und Brennelemente in Kernreaktoren. Für jede dieser Anwendungen besteht die Anforderung, die Wärmeübertragung an den Wärmeübertragerflächen zu optimieren. Dabei besteht eine enge Kopplung zwischen Wärmetransport und Strömungsstruktur. Eine besonders effiziente Form der Wärmeübertragung ist die Verdampfung. Diese wird unter anderem bei Brennelementen in Druckwasserreaktoren genutzt. Hier siedet das Kühlwasser an der Brennstaboberfläche. Durch Kondensation der Dampfblasen in der unterkühlten Kernströmung wird die Wärme dann effizient in die Flüssigphase übertragen. Durch die hohe Verdampfungsenthalpie des Wassers wird beim Strömungssieden ein viel höherer Wärmestrom in das Kühlwasser übertragen, als bei rein einphasig-konvektivem Wärmetransport. Sicherheitstechnisch relevant für Brennelemente in Leichtwasserreaktoren ist der Übergang vom Blasensieden zum Filmsieden (kritischer Wärmestrom). Dieser muss unter allen Umständen vermieden werden, um die Integrität der Brennstabhüllen zu gewährleisten, die bei Überschreiten der kritischen Heizflächenbelastung aufschmelzen bzw. reißen können. Aus diesem Grund werden im Rahmen eines vom Bundesministerium für Bildung und Forschung geförderten Projektes (Förderkennzeichen 02NUK010A) numerische Strömungsberechnungsmodelle entwickelt, die bei der Beschreibung und numerischen Behandlung der Siedephänomene helfen sollen. Zur Validierung dieser Modelle anhand von Experimenten wurde ein Strömungskanal konstruiert, in dem ein vertikales Stabbündel von einem Kältemittel (RC318) aufwärtig durchströmt wird. Der Versuchsstand ist so konzipiert, dass ein optischer und messtechnischer Zugang zu den umströmten Einbauten gegeben ist. Damit sind Messungen in Zweiphasenströmungen ebenso möglich, wie Untersuchungen zur einphasigen Durchströmung. Für später erfolgende Zweiphasen-Experimente mit Stabbeheizung wurden zunächst Voruntersuchungen zur einphasigen Durchströmungen durchgeführt, welche insbesondere Aufschluss über die Homogenität der Strömung in den Unterkanälen sowie die Existenz von Querströmungen geben sollten. Als Messverfahren dafür wurde die Particle Image Velocimetry (PIV) ausgewählt, welche es ermöglicht, zweidimensionale Strömungsfelder aufzuzeichnen. Die experimentellen Studien erfolgten am Optical Multi-Phase Flow Research Laboratory des Nuclear Engineering Department der Texas A&M University in College Station, USA.
Die Untersuchungen wurden für drei Volumenstromraten durchgeführt. Der vorliegende Bericht umfasst die Beschreibung des Versuchsstandes und der Messmethodik, eine Vorstellung des Auswerteverfahrens und relevanter Ergebnisse sowie eine Fehlerbetrachtung.
|
148 |
Annual Report 2011 - Institute of ion Beam Physics and Materials Research17 July 2012 (has links) (PDF)
The first year of membership of the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in the Helmholtz Association of German Research Centers (HGF) was a year of many changes also for the Institute of Ion Beam Physics and Materials Research (IIM). The transition period, however, is not yet over, since the full integration of the Center into the HGF will only be completed in the next period of the so-called program-oriented funding (POF). This funding scheme addresses the six core research fields identified by the Helmholtz Association (Energy; Earth and Environment; Health; Key Technologies; Structure of Matter; Aeronautics, Space and Transport) to deal with the grand challenges faced by society, science and industry. Since the Institute has strong contributions to both core fields “Key Technologies” and “Structure of Matter”, intense discussions were held amongst the leading scientists of the Institute, across the Institutes of the HZDR, and finally with leading scientists of other Helmholtz centers, to determine the most appropriate classification of the Institute’s research. At the end we decided to establish ourselves in Structure of Matter, the core field in which most of the large-scale photon, neutron and ion facilities in Germany are located. As a consequence, the Ion Beam Center (IBC) of the Institute submitted an application to become a HGF recognized large-scale facility, providing more than 50% of its available beam time to external users. This application perfectly reflects the development of the IBC over more than a decade as a European Union funded infrastructure in the framework of the projects “Center for Application of Ion Beams in Materials Research (AIM)” (1998-2000, 2000-2003, 2006-2010) and subsequently as the coordinator of the integrated infrastructure initiative (I3) “Support of Public and Industrial Research using Ion Beam Technology (SPIRIT)” (2009-2013). Another part of the Institute’s activities is dedicated to exploit the infrared/THz free-electron laser at the 40 MeV superconducting electron accelerator ELBE for condensed matter research. This facility is also open to external users and funded by the European Union.
|
149 |
Annual Report 2009/10 Rossendorf Beamline at ESRF (ROBL-CRG)19 July 2012 (has links) (PDF)
The Rossendorf Beamline (ROBL) - located at BM20 of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France - is in operation since 1998. This 7th report covers the period from January 2009 to December 2010. In these two years, 67 peer- reviewed papers have been published based on experiments done at the beamline, more than in any biannual period before. Six highlight reports have been selected for this report to demonstrate the scientific strength and diversity of the experiments performed on the two end-stations of the beamline, dedicated to Radiochemistry (RCH) and Materials Research (MRH).
The beamtime was more heavily overbooked than ever before, with an acceptance rate of only 25% experiments. We would like to thank our external proposal review members, Prof. Andre Maes (KU Leuven, Belgium), Prof. Laurent Charlet (UJF Grenoble, France), Dr. Andreas Leinweber (MPI Metallforschung, Stuttgart, Germany), Prof. David Rafaja (TU Bergakademie Freiberg, Germany), Prof. Dirk Meyer (TU Dresden, Germany), who evaluated the inhouse proposals in a thorough manner, thereby ensuring that beamtime was distributed according to scientific merit.
The period was not only characterized by very successful science, but also by intense work on the optics upgrade. In spring 2009, a workshop was held at ROBL, assembling beamline experts from German, Spanish and Swiss synchrotrons, to evaluate the best setup for the new optics. These suggestions was used to prepare the call for tender published in July 2009. From the tender acceptance in November 2009 on, a series of design review meetings and factory acceptance tests followed. Already in July 2010, the first piece of equipment was delivered, the new double-crystal, double-multilayer monochromator. The disassembly of the old optics components started end of July, 2011, followed by the installation of the new components. As of December 2011, the new optics have seen the first test beam and thorough hot commissioning will be continued until May 2012, since the ESRF shuts down for a major upgrade from December 2011 to April 2012. We expect that we will be ready for user operation from June 2012 on, with a better beamline than ever.
The beamline staff would like to thank all partners, research groups and organizations who supported the beamline during the last 24 months. Special thanks to the FZD management, the CRG office of the ESRF with Axel Kaprolat as liaison officer and Eric Dettona as lead technician, and to the ESRF safety group members, Paul Berkvens, Patrick Colomp and Yann Pira.
|
150 |
Wechselwirkung langsamer hochgeladener Ionen mit der Oberfläche von IonenkristallenHeller, R. 31 March 2010 (has links) (PDF)
In dieser Arbeit wird die Erzeugung permanenter Nanostrukturen durch den Beschuss mit langsamen (v < 5x105m/s) hochgeladenen (q < 40) Ionen auf den Oberflächen der Ionenkristalle CaF2 sowie KBr untersucht. Die systematische Analyse der Probenoberfläche mittels Raster-Kraft-Mikroskopie liefert detaillierte Informationen über den Einfluss von potentieller und kinetischer Projektilenergie auf den Prozess der Strukturerzeugung. Der individuelle Einfall hochgeladener Ionen auf der KBr(001)-Oberfläche kann die Erzeugung monoatomar tiefer, lochartiger Strukturen -Nanopits- mit einer lateralen Ausdehnung von wenigen 10nm initiieren. Das Volumen dieser Löcher und damit die Anzahl gesputterter Sekundärteilchen zeigt eine lineare Abhängigkeit von der potentiellen Energie der Projektile. Für das Einsetzen der Locherzeugung konnte ein von der Projektilgeschwindigkeit abhängiger Grenzwert der potentiellen Energie E_grenz^pot (Ekin) gefunden werden. Auf der Basis der defekt-induzierten Desorption durch Elektronen wurde unter Einbeziehung von Effekten der Defektagglomeration ein konsistentes mikroskopisches Modell für den Prozess der Locherzeugung konzipiert. Für die CaF2(111)-Oberfläche kann die aus jüngsten Studien bekannte, individuelle Erzeugung hügelartiger Nanostrukturen -Nanohillocks- durch hochgeladene Ionen in dieser Arbeit auch für kleinste kinetische Energien (E_kin < 150eVxq) verifiziert werden. Die potentielle Energie der einfallenden Ionen wird damit erstmalig zweifelsfrei als alleinige Ursache der Nanostrukturerzeugung identifiziert. Zudem zeigt sich bei geringer Projektilgeschwindigkeit eine Verschiebung der potentiellen Grenzenergie zur Hillock-Erzeugung. Im Rahmen einer Kooperation an der Technischen Universität Wien durchgeführte Simulationsrechnungen auf der Grundlage des inelastischen thermal spike-Modells zeigen, dass die individuelle Hillock-Erzeugung durch hochgeladene Ionen mit einer lokalen Schmelze des Ionenkristalls verknüpft werden kann. Dem essentiellen Einfluss der Elektronenemission während der Wechselwirkung des hochgeladenen Ions mit der Oberfläche auf den Prozess der Nanostrukturerzeugung wird in komplementären Untersuchungen zur Sekundärelektronenstatistik Rechnung getragen. Erstmalig werden dabei Gesamtelektronenausbeuten für Isolatoroberflächen bei kleinsten Projektilgeschwindigkeiten (v < 1x10^5 m/s) bestimmt. Für Geschwindigkeiten v < 5x10^4 m/s findet sich für die Isolatoroberfläche in starkem Kontrast zu Metallen ein signifikanter Abfall der Elektronenausbeute mit sinkender kinetischer Energie. Mögliche Ursachen dieses Effektes werden auf der Grundlage unterschiedlicher Modelle diskutiert.
|
Page generated in 0.0208 seconds