• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1029
  • 185
  • 34
  • 24
  • 24
  • 24
  • 19
  • 14
  • 5
  • 4
  • 4
  • 4
  • 1
  • Tagged with
  • 1260
  • 1021
  • 595
  • 413
  • 219
  • 179
  • 175
  • 151
  • 146
  • 135
  • 130
  • 129
  • 124
  • 123
  • 115
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Dynamic CPU frequency scaling using machine learning for NFV applications. / Escalamento dinâmico de frequência da CPU usando aprendizado de máquina em aplicações NFV.

Zorello, Ligia Maria Moreira 10 October 2018 (has links)
Growth in the Information and Communication Technology sector is increasing the need to improve the quality of service and energy efficiency, as this industry has already surpassed 12% of global energy consumption in 2017. Data centers correspond to a large part of this consumption, accounting for about 15% of energy expenditure on the Information and Communication Technology domain; moreover, the subsystem that generates the most costs for data center operators is that of servers and storage. Many solutions have been proposed to reduce server consumption, such as the use of dynamic voltage and frequency scaling, a technology that enables the adaptation of energy consumption to the workload by modifying the operating voltage and frequency, although they are not optimized for network traffic. In this thesis, a control method was developed using a prediction engine based on the analysis of the ongoing traffic. Machine learning algorithms based on Neural Networks and Support Vector Machines have been used, and it was verified that it is possible to reduce power consumption by up to 12% on servers with Intel Sandy Bridge processor and up to 21 % in servers with Intel Haswell processor when compared to the maximum frequency, which is currently the most used solution in the industry. / O crescimento do setor de Tecnologia da Informação e Comunicação está aumentando a necessidade de melhorar a qualidade de serviço e a eficiência energética, pois o setor já ultrapassou a marca de 12% do consumo energético global em 2017. Data centers correspondem a grande parte desse consumo, representando cerca de 15% dos gastos com energia do setor Tecnologia Informação e Comunicação; além disso, o subsistema que gera mais custos para operadores de data centers é o de servidores e armazenamento. Muitas soluções foram propostas a fim de reduzir o consumo de energia com servidores, como o uso de escalonamento dinâmico de tensão e frequência, uma tecnologia que permite adaptar o consumo de energia à carga de trabalho, embora atualmente não sejam otimizadas para o processamento do tráfego de rede. Nessa dissertação, foi desenvolvido um método de controle usando um mecanismo de previsão baseado na análise do tráfego que chega aos servidores. Os algoritmos de aprendizado de máquina baseados em Redes Neurais e em Máquinas de Vetores de Suporte foram utilizados, e foi verificado que é possível reduzir o consumo de energia em até 12% em servidores com processador Intel Sandy Bridge e em até 21% em servidores com processador Intel Haswell quando comparado com a frequência máxima, que é atualmente a solução mais utilizada na indústria.
252

Evolutionary ensembles for imbalanced learning / Comitês evolucionários para aprendizado desbalanceado

Fernandes, Everlandio Rebouças Queiroz 13 August 2018 (has links)
In many real classification problems, the data set used for model induction is significantly imbalanced. This occurs when the number of examples of some classes is much lower than the other classes. Imbalanced datasets can compromise the performance of most classical classification algorithms. The classification models induced by such datasets usually present a strong bias towards the majority classes, tending to classify new instances as belonging to these classes. A commonly adopted strategy for dealing with this problem is to train the classifier on a balanced sample from the original dataset. However, this procedure can discard examples that could be important for a better class discrimination, reducing classifier efficiency. On the other hand, in recent years several studies have shown that in different scenarios the strategy of combining several classifiers into structures known as ensembles has proved to be quite effective. This strategy has led to a stable predictive accuracy and, in particular, to a greater generalization ability than the classifiers that make up the ensemble. This generalization power of classifier ensembles has been the focus of research in the imbalanced learning field in order to reduce the bias toward the majority classes, despite the complexity involved in generating efficient ensembles. Optimization meta-heuristics, such as evolutionary algorithms, have many applications for ensemble learning, although they are little used for this purpose. For example, evolutionary algorithms maintain a set of possible solutions and diversify these solutions, which helps to escape out of the local optimal. In this context, this thesis investigates and develops approaches to deal with imbalanced datasets, using ensemble of classifiers induced by samples taken from the original dataset. More specifically, this theses propose three solutions based on evolutionary ensemble learning and a fourth proposal that uses a pruning mechanism based on dominance ranking, a common concept in multiobjective evolutionary algorithms. Experiments showed the potential of the developed solutions. / Em muitos problemas reais de classificação, o conjunto de dados usado para a indução do modelo é significativamente desbalanceado. Isso ocorre quando a quantidade de exemplos de algumas classes é muito inferior às das outras classes. Conjuntos de dados desbalanceados podem comprometer o desempenho da maioria dos algoritmos clássicos de classificação. Os modelos de classificação induzidos por tais conjuntos de dados geralmente apresentam um forte viés para as classes majoritárias, tendendo classificar novas instâncias como pertencentes a essas classes. Uma estratégia comumente adotada para lidar com esse problema, é treinar o classificador sobre uma amostra balanceada do conjunto de dados original. Entretanto, esse procedimento pode descartar exemplos que poderiam ser importantes para uma melhor discriminação das classes, diminuindo a eficiência do classificador. Por outro lado, nos últimos anos, vários estudos têm mostrado que em diferentes cenários a estratégia de combinar vários classificadores em estruturas conhecidas como comitês tem se mostrado bastante eficaz. Tal estratégia tem levado a uma acurácia preditiva estável e principalmente a apresentar maior habilidade de generalização que os classificadores que compõe o comitê. Esse poder de generalização dos comitês de classificadores tem sido foco de pesquisas no campo de aprendizado desbalanceado, com o objetivo de diminuir o viés em direção as classes majoritárias, apesar da complexidade que envolve gerar comitês de classificadores eficientes. Meta-heurísticas de otimização, como os algoritmos evolutivos, têm muitas aplicações para o aprendizado de comitês, apesar de serem pouco usadas para este fim. Por exemplo, algoritmos evolutivos mantêm um conjunto de soluções possíveis e diversificam essas soluções, o que auxilia na fuga dos ótimos locais. Nesse contexto, esta tese investiga e desenvolve abordagens para lidar com conjuntos de dados desbalanceados, utilizando comitês de classificadores induzidos a partir de amostras do conjunto de dados original por meio de metaheurísticas. Mais especificamente, são propostas três soluções baseadas em aprendizado evolucionário de comitês e uma quarta proposta que utiliza um mecanismo de poda baseado em ranking de dominância, conceito comum em algoritmos evolutivos multiobjetivos. Experimentos realizados mostraram o potencial das soluções desenvolvidas.
253

Exercício físico, neurogênese e memória / Exercise, neurogenesis and memory

Teixeira, Lívia Clemente Motta 18 December 2013 (has links)
A neurogênese hipocampal é modulada por muitos fatores que incluem envelhecimento, estresse, enriquecimento ambiental, atividade física e aprendizado. Atividade física voluntária (espontânea) estimula a proliferação celular no giro denteado e facilita a aquisição e/ou retenção de tarefas dependentes do hipocampo, incluindo o Labirinto Aquático de Morris. Embora seja bem estabelecido que o exercício físico regular melhore o desempenho em tarefas de memória e aprendizado, não está claro qual a duração desses benefícios após o final da atividade física. Neste estudo investigamos a relação temporal entre os efeitos benéficos da atividade física associado ao aprendizado de tarefa dependente da função hipocampal, e sua relação com a neurogênese, levando em consideração também o tempo decorrido desde o término da atividade física. Grupos independentes de ratos tiveram acesso a roda de atividade ao longo de 7 dias (Grupo EXE) ou roda bloqueada (Grupo Ñ-EXE) e receberam injeções de BrdU nos últimos 3 dias de exposição roda. Após um INTERVALO de 1, 3 ou 6 semanas após o final da exposição a roda de atividade após o final da exposição a roda de atividade, os animais foram testados no labirinto aquático de Morris, sendo uma parte deles expostos a tarefa de memória operacional espacial, dependente da função hipocampal (H), e outra parte a uma tarefa de busca por uma plataforma visível, independente da função hipocampal (ÑH). Em ambos os casos, o intervalo entre as tentativas (ITI) foi de 10 minutos durante as sessões 1-6 e (virtualmente) zero minutos durante as sessões 7-10. Concluída a tarefa os cérebros foram processados para imuno-histoquímica. Foram feitas imunoistoquímicas para a detecção de Ki-67 (proliferação celular), BrdU, NeuN (para identificar neurónios maduros), e DCX (para identificar imaturo neurônios). Nossos dados suportam a ideia que atividade física voluntária induz um aumento na proliferação celular e na diferenciação neuronal (neurogênese) no giro denteado. A introdução de um período de intervalo entre o final do exercício e a execução da tarefa comportamental causa uma redução significativa na sobrevivência dos novos neurônios, como observado com 1 semana de intervalo em comparação com os animais testados com 6 semanas de intervalo. Em contraste, entretanto, o presente resultado não confirma que esse aumento da neurogênese é acompanhado por melhora na memória espacial, como avaliado por meio da versão que envolve memória operacional no labirinto aquático de Morris. O aprendizado da tarefa do labirinto aquático de Morris, na versão de memória operacional que é dependente do hipocampo, leva a um aumento da sobrevivência dos novos neurônios que foram produzidos no período de exercício, ao passo que o aprendizado da versão independente da tarefa leva a uma redução do número absoluto de novos neurônios / Hippocampal adult neurogenesis is modulated by many factors including age, stress, environmental enrichment, physical exercise and learning. Spontaneous exercise in a running wheel stimulates cell proliferation in the adult dentate gyrus and facilitates acquisition and/or retention of hippocampal-dependent tasks including the Morris water maze. While it is well established that regular physical exercise improves cognitive performance, it is unclear for how long these benefits last after its interruption. In this study, we investigate the temporal relation between exercise-induced benefits associated with learning of a hippocampal-dependent task, this relationship with neurogenesis, considering the time after exercise has ended. Independent groups of rats were given free access to either unlocked (EXE Group) or locked (No-EXE Group) running wheels for 7 days, having received daily injections of BrdU for the last 3 days. The animals were then transferred to standard home cages. After a time period of either 1, 3 or 6 weeks, the animals were tested in the Morris water maze, one of them being exposed to the spatial working memory task dependent on hippocampal function (H) and partly to a task search for a visible platform, independent of hippocampal function (NH). In both cases, the interval between trials (ITI) was 10 minutes during sessions and 1-6 and (virtually) zero minute during the sessions 7-10. After the task brains were processed for immunohistochemistry. Cell proliferation and net neurogenesis were assessed in hippocampal sections using antibodies against BrdU, NeuN (to identify mature neurons), and DCX (to identify immature neurons). Data of the present study confirm that exposure of rats to 7 days of spontaneous wheel running increases cell proliferation and neurogenesis. In contrast, however, the present results did not confirm that this neurogenesis is accompanied by a significant improvement in spatial learning, as evaluated using the working memory version of the Morris’ water maze task. The introduction of a delay period between the end of exercise and cognitive training on the Morris water maze reduces cell survival; the number of new neurons was higher in the EXE1 week delay group as compared to the EXE6 week delay. We showed that learning the Morris water maze in the working memory task dependent on hippocampal function (H) increases the new neurons survival, in contrast, learning hippocampal-independent version of the task decreases number of new neurons
254

Learning acyclic probabilistic logic programs from data. / Aprendizado de programas lógico-probabilísticos acíclicos.

Faria, Francisco Henrique Otte Vieira de 12 December 2017 (has links)
To learn a probabilistic logic program is to find a set of probabilistic rules that best fits some data, in order to explain how attributes relate to one another and to predict the occurrence of new instantiations of these attributes. In this work, we focus on acyclic programs, because in this case the meaning of the program is quite transparent and easy to grasp. We propose that the learning process for a probabilistic acyclic logic program should be guided by a scoring function imported from the literature on Bayesian network learning. We suggest novel techniques that lead to orders of magnitude improvements in the current state-of-art represented by the ProbLog package. In addition, we present novel techniques for learning the structure of acyclic probabilistic logic programs. / O aprendizado de um programa lógico probabilístico consiste em encontrar um conjunto de regras lógico-probabilísticas que melhor se adequem aos dados, a fim de explicar de que forma estão relacionados os atributos observados e predizer a ocorrência de novas instanciações destes atributos. Neste trabalho focamos em programas acíclicos, cujo significado é bastante claro e fácil de interpretar. Propõe-se que o processo de aprendizado de programas lógicos probabilísticos acíclicos deve ser guiado por funções de avaliação importadas da literatura de aprendizado de redes Bayesianas. Neste trabalho s~ao sugeridas novas técnicas para aprendizado de parâmetros que contribuem para uma melhora significativa na eficiência computacional do estado da arte representado pelo pacote ProbLog. Além disto, apresentamos novas técnicas para aprendizado da estrutura de programas lógicos probabilísticos acíclicos.
255

Expansão de recursos para análise de sentimentos usando aprendizado semi-supervisionado / Extending sentiment analysis resources using semi-supervised learning

Brum, Henrico Bertini 23 March 2018 (has links)
O grande volume de dados que temos disponíveis em ambientes virtuais pode ser excelente fonte de novos recursos para estudos em diversas tarefas de Processamento de Linguagem Natural, como a Análise de Sentimentos. Infelizmente é elevado o custo de anotação de novos córpus, que envolve desde investimentos financeiros até demorados processos de revisão. Nossa pesquisa propõe uma abordagem de anotação semissupervisionada, ou seja, anotação automática de um grande córpus não anotado partindo de um conjunto de dados anotados manualmente. Para tal, introduzimos o TweetSentBR, um córpus de tweets no domínio de programas televisivos que possui anotação em três classes e revisões parciais feitas por até sete anotadores. O córpus representa um importante recurso linguístico de português brasileiro, e fica entre os maiores córpus anotados na literatura para classificação de polaridades. Além da anotação manual do córpus, realizamos a implementação de um framework de aprendizado semissupervisionado que faz uso de dados anotados e, de maneira iterativa, expande o mesmo usando dados não anotados. O TweetSentBR, que possui 15:000 tweets anotados é assim expandido cerca de oito vezes. Para a expansão, foram treinados modelos de classificação usando seis classificadores de polaridades, assim como foram avaliados diferentes parâmetros e representações a fim de obter um córpus confiável. Realizamos experimentos gerando córpus expandidos por cada classificador, tanto para a classificação em três polaridades (positiva, neutra e negativa) quanto para classificação binária. Avaliamos os córpus gerados usando um conjunto de held-out e comparamos a FMeasure da classificação usando como treinamento os córpus anotados manualmente e semiautomaticamente. O córpus semissupervisionado que obteve os melhores resultados para a classificação em três polaridades atingiu 62;14% de F-Measure média, superando a média obtida com as avaliações no córpus anotado manualmente (61;02%). Na classificação binária, o melhor córpus expandido obteve 83;11% de F1-Measure média, superando a média obtida na avaliação do córpus anotado manualmente (79;80%). Além disso, simulamos nossa expansão em córpus anotados da literatura, medindo o quão corretas são as etiquetas anotadas semi-automaticamente. Nosso melhor resultado foi na expansão de um córpus de reviews de produtos que obteve FMeasure de 93;15% com dados binários. Por fim, comparamos um córpus da literatura obtido por meio de supervisão distante e nosso framework semissupervisionado superou o primeiro na classificação de polaridades binária em cross-domain. / The high volume of data available in the Internet can be a good resource for studies of several tasks in Natural Language Processing as in Sentiment Analysis. Unfortunately there is a high cost for the annotation of new corpora, involving financial support and long revision processes. Our work proposes an approach for semi-supervised labeling, an automatic annotation of a large unlabeled set of documents starting from a manually annotated corpus. In order to achieve that, we introduced TweetSentBR, a tweet corpora on TV show programs domain with annotation for 3-point (positive, neutral and negative) sentiment classification partially reviewed by up to seven annotators. The corpus is an important linguistic resource for Brazilian Portuguese language and it stands between the biggest annotated corpora for polarity classification. Beyond the manual annotation, we implemented a semi-supervised learning based framework that uses this labeled data and extends it using unlabeled data. TweetSentBR corpus, containing 15:000 documents, had its size augmented in eight times. For the extending process, we trained classification models using six polarity classifiers, evaluated different parameters and representation schemes in order to obtain the most reliable corpora. We ran experiments generating extended corpora for each classifier, both for 3-point and binary classification. We evaluated the generated corpora using a held-out subset and compared the obtained F-Measure values with the manually and the semi-supervised annotated corpora. The semi-supervised corpus that obtained the best values for 3-point classification achieved 62;14% on average F-Measure, overcoming the results obtained by the same classification with the manually annotated corpus (61;02%). On binary classification, the best extended corpus achieved 83;11% on average F-Measure, overcoming the results on the manually corpora (79;80%). Furthermore, we simulated the extension of labeled corpora in literature, measuring how well the semi-supervised annotation works. Our best results were in the extension of a product review corpora, achieving 93;15% on F1-Measure. Finally, we compared a literature corpus which was labeled by using distant supervision with our semi-supervised corpus, and this overcame the first in binary polarity classification on cross-domain data.
256

"Seleção de atributos importantes para a extração de conhecimento de bases de dados" / "Selection of important features for knowledge extraction from data bases"

Lee, Huei Diana 16 December 2005 (has links)
O desenvolvimento da tecnologia e a propagação de sistemas computacionais nos mais variados domínios do conhecimento têm contribuído para a geração e o armazenamento de uma quantidade constantemente crescente de dados, em uma velocidade maior da que somos capazes de processar. De um modo geral, a principal razão para o armazenamento dessa enorme quantidade de dados é a utilização deles em benefício da humanidade. Diversas áreas têm se dedicado à pesquisa e a proposta de métodos e processos para tratar esses dados. Um desses processos é a Descoberta de Conhecimento em Bases de Dados, a qual tem como objetivo extrair conhecimento a partir das informações contidas nesses dados. Para alcançar esse objetivo, usualmente são construídos modelos (hipóteses), os quais podem ser gerados com o apoio de diferentes áreas tal como a de Aprendizado de Máquina. A Seleção de Atributos desempenha uma tarefa essencial dentro desse processo, pois representa um problema de fundamental importância em aprendizado de máquina, sendo freqüentemente realizada como uma etapa de pré-processamento. Seu objetivo é selecionar os atributos mais importantes, pois atributos não relevantes e/ou redundantes podem reduzir a precisão e a compreensibilidade das hipóteses induzidas por algoritmos de aprendizado supervisionado. Vários algoritmos para a seleção de atributos relevantes têm sido propostosna literatura. Entretanto, trabalhos recentes têm mostrado que também deve-se levar em conta a redundância para selecionar os atributos importantes, pois os atributos redundantes também afetam a qualidade das hipóteses induzidas. Para selecionar alguns e descartar outros, é preciso determinar a importância dos atributos segundo algum critério. Entre os vários critérios de importância de atributos propostos, alguns estão baseados em medidas de distância, consistência ou informação, enquanto outros são fundamentados em medidas de dependência. Outra questão essencial são as avaliações experimentais, as quais representam um importante instrumento de estimativa de performance de algoritmos de seleção de atributos, visto que não existe análise matemática que permita predizer que algoritmo de seleção de atributos será melhor que outro. Essas comparações entre performance de algoritmos são geralmente realizadas por meio da análise do erro do modelo construído a partir dos subconjuntos de atributos selecionados por esses algoritmos. Contudo, somente a consideração desse parâmetro não é suficiente; outras questões devem ser consideradas, tal como a percentagem de redução da quantidade de atributos desses subconjuntos de atributos selecionados. Neste trabalho é proposto um algoritmo que separa as análises de relevância e de redundância de atributos e introduz a utilização da Dimensão Fractal para tratar atributos redundantes em aprendizado supervisionado. É também proposto um modelo de avaliação de performance de algoritmos de seleção de atributos baseado no erro da hipótese construída e na percentagem de redução da quantidade de atributos selecionados. Resultados experimentais utilizando vários conjuntos de dados e diversos algoritmos consolidados na literatura, que selecionam atributos importantes, mostram que nossa proposta é competitiva com esses algoritmos. Outra questão importante relacionada à extração de conhecimento a partir de bases de dados é o formato no qual os dados estão representados. Usualmente, é necessário que os exemplos estejam descritos no formato atributo-valor. Neste trabalho também propomos um metodologia para dar suporte, por meio de um processo semi-automático, à construção de conjuntos de dados nesse formato, originados de informações de pacientes contidas em laudos médicos que estão descritos em linguagem natural. Esse processo foi aplicado com sucesso a um caso real. / Progress in computer systems and devices applied to a different number of fields, have made it possible to collect and store an increasing amount of data. Moreover, this technological advance enables the storage of a huge amount of data which is difficult to process unless new approaches are used. The main reason to maintain all these data is to use it in a general way for the benefit of humanity. Many areas are engaged in the research and proposal of methods and processes to deal with this growing data. One such process is Knowledge Discovery from Databases, which aims at finding valuable and interesting knowledge which may be hidden inside the data. In order to extract knowledge from data, models (hypothesis) are usually developed supported by many fields such as Machine Learning. Feature Selection plays an important role in this process since it represents a central problem in machine learning and is frequently applied as a data pre-processing step. Its objective is to choose a subset from the original features that describes a data set, according to some importance criterion, by removing irrelevant and/or redundant features, as they may decrease data quality and reduce comprehensibility of hypotheses induced by supervised learning algorithms. Most of the state-of-art feature selection algorithms mainly focus on finding relevant features. However, it has been shown that relevance alone is not sufficient to select important features. Different approaches have been proposed to select features, among them the filter approach. The idea of this approach is to remove features before the model's induction takes place, based on general characteristics from the data set. For the purpose of selecting features and discarding others, it is necessary to measure the features' goodness, and many importance measures have been proposed. Some of them are based on distance measures, consistency of data and information content, while others are founded on dependence measures. As there is no mathematical analysis capable of predicting whether a feature selection algorithm will produce better feature subsets than others, it is important to empirically evaluate the performance of these algorithms. Comparisons among algorithms' performance is usually carried out through the model's error analysis. Nevertheless, this sole parameter is not complete enough, and other issues, such as percentage of the feature's subset reduction should also be taken into account. In this work we propose a filter that decouples features' relevance and redundancy analysis, and introduces the use of Fractal Dimension to deal with redundant features. We also propose a performance evaluation model based on the constructed hypothesis' error and the percentage of reduction obtained from the selected feature subset. Experimental results obtained using well known feature selection algorithms on several data sets show that our proposal is competitive with them. Another important issue related to knowledge extraction from data is the format the data is represented. Usually, it is necessary to describe examples in the so-called attribute-value format. This work also proposes a methodology to support, through a semi-automatic process, the construction of a database in the attribute-value format from patient information contained in medical findings which are described in natural language. This process was successfully applied to a real case.
257

Interpretação de clusters gerados por algoritmos de clustering hierárquico / Interpreting clusters generated by hierarchical clustering algorithms

Metz, Jean 04 August 2006 (has links)
O processo de Mineração de Dados (MD) consiste na extração automática de padrões que representam o conhecimento implícito em grandes bases de dados. Em geral, a MD pode ser classificada em duas categorias: preditiva e descritiva. Tarefas da primeira categoria, tal como a classificação, realizam inferências preditivas sobre os dados enquanto que tarefas da segunda categoria, tal como o clustering, exploram o conjunto de dados em busca de propriedades que o descrevem. Diferentemente da classificação, que analisa exemplos rotulados, o clustering utiliza exemplos para os quais o rótulo da classe não é previamente conhecido. Nessa tarefa, agrupamentos são formados de modo que exemplos de um mesmo cluster apresentam alta similaridade, ao passo que exemplos em clusters diferentes apresentam baixa similaridade. O clustering pode ainda facilitar a organização de clusters em uma hierarquia de agrupamentos, na qual são agrupados eventos similares, criando uma taxonomia que pode simplificar a interpretação de clusters. Neste trabalho, é proposto e desenvolvido um módulo de aprendizado não-supervisionado, que agrega algoritmos de clustering hierárquico e ferramentas de análise de clusters para auxiliar o especialista de domínio na interpretação dos resultados do clustering. Uma vez que o clustering hierárquico agrupa exemplos de acordo com medidas de similaridade e organiza os clusters em uma hierarquia, o usuário/especialista pode analisar e explorar essa hierarquia de agrupamentos em diferentes níveis para descobrir conceitos descritos por essa estrutura. O módulo proposto está integrado em um sistema maior, em desenvolvimento no Laboratório de Inteligência Computacional ? LABIC ?, que contempla todas as etapas do processo de MD, desde o pré-processamento de dados ao pós-processamento de conhecimento. Para avaliar o módulo proposto e seu uso para descoberta de conceitos a partir da estrutura hierárquica de clusters, foram realizados diversos experimentos sobre conjuntos de dados naturais, assim como um estudo de caso utilizando um conjunto de dados real. Os resultados mostram a viabilidade da metodologia proposta para interpretação dos clusters, apesar da complexidade do processo ser dependente das características do conjunto de dados. / The Data Mining (DM) process consists of the automated extraction of patterns representing knowledge implicitly stored in large databases. In general, DM tasks can be classified into two categories: predictive and descriptive. Tasks in the first category, such as classification and prediction, perform inference on the data in order to make predictions, while tasks in the second category, such as clustering, characterize the general properties of the data. Unlike classification and prediction, which analyze class-labeled data objects, clustering analyses data objects without a known class-label. Clusters of objects are formed so that objects that are in the same cluster have a close similarity among them, but are very dissimilar to objects in other clusters. Clustering can also facilitate the organization of clusters into a hierarchy of clusters that group similar events together. This taxonomy formation can facilitate interpretation of clusters. In this work, we propose and develop tools to deal with this task by implementing a module which comprises hierarchical clustering algorithms and several cluster analysis tools, aiming to help the domain specialist to interpret the clustering results. Once clusters group objects based on similarity measures which are organized into a hierarchy, the user/specialist is able to carry out an analysis and exploration of the agglomeration hierarchy at different levels of the hierarchy in order to discover concepts described by this structure. The proposed module is integrated into a large system under development by researchers from the Computational Intelligence Laboratory ? LABIC ?- which contemplates all the DM process steps, from data pre-processing to knowledge post-processing. To evaluate the implemented module and its use to discover concepts from the hierarchical structure of clusters, several experiments on natural databases were carried out as well as a case study using a real database. Results show the viability of the proposed methodology although the process could be complex depending on the characteristics of the database.
258

Usando Serviços Web para integrar aplicações cientes de contexto / Applying Web services to integrate context-aware applications

Jardim, Carlos Henrique Odenique 20 March 2006 (has links)
A Computação Ubíqua está revolucionando a interação do ser-humano com os dispositivos computacionais ao disponibilizar tecnologias pouco intrusivas ao cotidiano das pessoas. A Computação Ciente de Contexto, um dos temas de pesquisa em Computação Ubíqua, tem contribuído para a construção de aplicações capazes de customizar-se e adaptar-se às necessidades do usuário sem a intervenção explícita deste. Suportar o desenvolvimento de aplicações Cientes de Contexto é um dos desafios da Computação Ubíqua. Desenvolvido no mesmo grupo de pesquisa que este trabalho está inserido, o Serviço Web Context Kernel, gerencia informações de contexto e explora as especificações e tecnologias da Web como plataforma de intercâmbio para a informação contextual. O trabalho aqui reportado teve como objetivo investigar a utilização de Serviços Web por meio do emprego da infra-estrutura Context Kernel na integração de aplicações em cenários de trabalho colaborativo e de aprendizado eletrônico. Como resultado, foi elaborado um conjunto de lições aprendidas provenientes do estudo e do emprego das especificações para Serviços Web. Outros resultados foram: as especificações de informações de contexto de grupo e de metadados educacionais em dimensões de contexto e exemplos de utilização do Context Kernel para tornar aplicações cientes de contexto. / Ubiquitous computing has became a revolution in terms of the user-computer interaction by providing technologies that seamlessly integrate themselves to people?s everyday life. Context-aware computing, which is an important research theme in ubiquitous computing, has been contributing for the building of applications that are capable both to customize and adapt themselves aiming to support a user without disturb him. A great challenge in ubiquitous computing has been the support to build context-aware aplications. For that reason, the it has been developed the Context Kernel Web Service, which is a service infrastructure that makes use of Web-based specifications and technologies in order to promote the management and the interchange of context information. In this work the usage of Web Services was analyzed by using the Context Kernel to integrate applications in scenarios of cooperative work and e-learning. As a result, a list of lessons learned was ellaborated with respect to the use and the study of Web Services specifications for context-aware computing. Other results include a context information specifications for metadata about group and educational resources as well as examples of how to use the Context Kernel to leverage applications context-aware.
259

Machine learning in complex networks: modeling, analysis, and applications / Aprendizado de máquina em redes complexas: modelagem, análise e aplicações

Silva, Thiago Christiano 13 December 2012 (has links)
Machine learning is evidenced as a research area with the main purpose of developing computational methods that are capable of learning with their previously acquired experiences. Although a large amount of machine learning techniques has been proposed and successfully applied in real systems, there are still many challenging issues, which need be addressed. In the last years, an increasing interest in techniques based on complex networks (large-scale graphs with nontrivial connection patterns) has been verified. This emergence is explained by the inherent advantages provided by the complex network representation, which is able to capture the spatial, topological and functional relations of the data. In this work, we investigate the new features and possible advantages offered by complex networks in the machine learning domain. In fact, we do show that the network-based approach really brings interesting features for supervised, semisupervised, and unsupervised learning. Specifically, we reformulate a previously proposed particle competition technique for both unsupervised and semisupervised learning using a stochastic nonlinear dynamical system. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition to that, data reliability issues are explored in semisupervised learning. Such matter has practical importance and is found to be of little investigation in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this work, we propose a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. Our study shows that the proposed technique not only can realize classification according to the semantic meaning of the data, but also is able to improve the performance of traditional classification techniques. Finally, it is expected that this study will contribute, in a relevant manner, to the machine learning area / Aprendizado de máquina figura-se como uma área de pesquisa que visa a desenvolver métodos computacionais capazes de aprender com a experiência. Embora uma grande quantidade de técnicas de aprendizado de máquina foi proposta e aplicada, com sucesso, em sistemas reais, existem ainda inúmeros problemas desafiantes que necessitam ser explorados. Nos últimos anos, um crescente interesse em técnicas baseadas em redes complexas (grafos de larga escala com padrões de conexão não triviais) foi verificado. Essa emergência é explicada pelas inerentes vantagens que a representação em redes complexas traz, sendo capazes de capturar as relações espaciais, topológicas e funcionais dos dados. Nesta tese, serão investigadas as possíveis vantagens oferecidas por redes complexas quando utilizadas no domínio de aprendizado de máquina. De fato, será mostrado que a abordagem por redes realmente proporciona melhorias nos aprendizados supervisionado, semissupervisionado e não supervisionado. Especificamente, será reformulada uma técnica de competição de partículas para o aprendizado não supervisionado e semissupervisionado por meio da utilização de um sistema dinâmico estocástico não linear. Em complemento, uma análise analítica de tal modelo será desenvolvida, permitindo o entendimento evolucional do modelo no tempo. Além disso, a questão de confiabilidade de dados será investigada no aprendizado semissupervisionado. Tal tópico tem importância prática e é pouco estudado na literatura. Com o objetivo de validar essas técnicas em problemas reais, simulações computacionais em bases de dados consagradas pela literatura serão conduzidas. Ainda nesse trabalho, será proposta uma técnica híbrica de classificação supervisionada que combina tanto o aprendizado de baixo como de alto nível. O termo de baixo nível pode ser implementado por qualquer técnica de classificação tradicional, enquanto que o termo de alto nível é realizado pela extração das características de uma rede construída a partir dos dados de entrada. Nesse contexto, aquele classifica as instâncias de teste segundo qualidades físicas, enquanto que esse estima a conformidade da instância de teste com a formação de padrões dos dados. Os estudos aqui desenvolvidos mostram que o método proposto pode melhorar o desempenho de técnicas tradicionais de classificação, além de permitir uma classificação de acordo com o significado semântico dos dados. Enfim, acredita-se que este estudo possa gerar contribuições relevantes para a área de aprendizado de máquina.
260

Um ambiente para avaliação de algoritmos de aprendizado de máquina simbólico utilizando exemplos. / An environment to evaluate machine learning algorithms.

Batista, Gustavo Enrique de Almeida Prado Alves 15 October 1997 (has links)
Um sistema de aprendizado supervisionado é um programa capaz de realizar decisões baseado na experiência contida em casos resolvidos com sucesso. As regras de classificação induzidas por um sistema de aprendizado podem ser analisadas segundo dois critérios: a complexidade dessas regras e o erro de classificação sobre um conjunto independente de exemplos. Sistemas de aprendizado têm sido desenvolvidos na prática utilizando diferentes paradigmas incluindo estatística, redes neurais, bem como sistemas de aprendizado simbólico proposicionais e relacionais. Diversos métodos de aprendizado podem ser aplicados à mesma amostra de dados e alguns deles podem desempenhar melhor que outros. Para uma dada aplicação, não existem garantias que qualquer um desses métodos é necessariamente o melhor. Em outras palavras, não existe uma análise matemática que possa determinar se um algoritmo de aprendizado irá desempenhar melhor que outro. Desta forma, estudos experimentais são necessários. Neste trabalho nos concentramos em uma tarefa de aprendizado conhecida como classificação ou predição, na qual o problema consiste na construção de um procedimento de classificação a partir de um conjunto de casos no qual as classes verdadeiras são conhecidas, chamado de aprendizado supervisionado. O maior objetivo de um classificador é ser capaz de predizer com sucesso a respeito de novos casos. A performance de um classificador é medida em termos da taxa de erro. Técnicas experimentais para estimar a taxa de erro verdadeira não somente provêem uma base para comparar objetivamente as performances de diversos algoritmos de aprendizado no mesmo conjunto de exemplos, mas também podem ser uma ferramenta poderosa para projetar um classificador. As técnicas para estimar a taxa de erro são baseadas na teoria estatística de resampling. Um ambiente chamado AMPSAM foi implementado para ajudar na aplicação dos métodos de resampling em conjuntos de exemplos do mundo real. AMPSAM foi projetado como uma coleção de programas independentes, os quais podem interagir entre si através de scripts pré-definidos ou de novos scripts criados pelo usuário. O ambiente utiliza um formato padrão para arquivos de exemplos o qual é independente da sintaxe de qualquer algoritmo. AMPSAM também inclui ferramentas para particionar conjuntos de exemplos em conjuntos de treinamento e teste utilizando diferentes métodos de resampling. Além do método holdout, que é o estimador de taxa de erro mais comum, AMPSAM suporta os métodos n-fold cross-validation --- incluindo o leaning-one-out --- e o método bootstrap. As matrizes de confusão produzidas em cada iteração utilizando conjuntos de treinamento e teste podem ser fornecidas a um outro sistema implementado chamado SMEC. Este sistema calcula e mostra graficamente algumas das medidas descritivas mais importantes relacionadas com tendência central e dispersão dos dados. Este trabalho também relata os resultados experimentais a respeito de medidas do erro de classificação de três classificadores proposicionais e relacionais bem conhecidos, utilizando ambos os sistemas implementados, em diversos conjuntos de exemplos freqüentemente utilizados em pesquisas de Aprendizado de Máquina. / A learning system is a computer program that makes decisions based on the accumulative experience contained in successfully solved cases. The classification rules induced by a learning system are judged by two criteria: their classification error on an independent test set and their complexity. Practical learning systems have been developed using different paradigms including statistics, neural nets, as well as propositional and relational symbolic machine learning. Several learning methods can be applied to the same sample data and some of them may do better than others. Still, for a given application, there is no guarantee that any of these methods will work or that any single method is necessarily the best one. In other words, there is not a mathematical analysis method that can determine whether a learning system algorithm will work well. Hence, experimental studies are required. In this work we confine our attention to the learning task known as classification or prediction, where the problem concerns the construction of a classification procedure from a set of data for which the true classes are known, and is termed supervised learning. The overall objective of a classifier is to be able to predict successfully on new data. Performance is measured in terms of the error rate. Error rate estimation techniques not only provide a basis for objectively comparing the error rate of several classifiers on the same data and then estimating their future performance on new data, but they can also be a powerful tool for designing a classifier. The techniques of error rate estimation are based on statistical resampling theory. In this work, rules induced complexity of propositional and relational learning systems as well as several resampling methods to estimate the true error rate are discussed. An environment called AMPSAM has been implemented to aid in the application of resampling methods to real world data sets. AMPSAM consists of a collection of interdependent programs that can be bound together either by already defined or by new user defined scripts. The environment uses a common file format for data sets which is independent of any specific classifier scheme. It also includes facilities for splitting data sets up into test and training sets using different methods. Besides holdout, which is the most common accuracy estimation method, AMPSAM supports n-fold cross-validation --- including leaving-one-out --- and bootstrap. The confusion matrices produced in each run using those test and training sets can be input to another system called SMEC. This system calculates and graphically displays some of the most important descriptive measures related to central tendency and dispersion of those data. This work also reports the results of experiments measuring the classification error of three well known propositional and relational classifiers, using the implemented systems, on several data sets commonly used in Machine Learning research.

Page generated in 0.052 seconds