• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 62
  • 55
  • 15
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Role of histone deacetylases in gene expression and RNA splicing

Khan, Dilshad Hussain 23 April 2013 (has links)
Histone deacetylases (HDAC) 1 and 2 play crucial role in chromatin remodeling and gene expression regimes, as part of multiprotein corepressor complexes. Protein kinase CK2-driven phosphorylation of HDAC1 and 2 regulates their catalytic activities and is required to form the corepressor complexes. Phosphorylation-mediated differential distributions of HDAC1 and 2 complexes in regulatory and coding regions of transcribed genes catalyze the dynamic protein acetylation of histones and other proteins, thereby influence gene expression. During mitosis, highly phosphorylated HDAC1 and 2 heterodimers dissociate and displace from mitotic chromosomes. Our goal was to identify the kinase involved in mitotic phosphorylation of HDAC1 and 2. We postulated that CK2-mediated increased phosphorylation of HDAC1 and 2 leads to dissociation of the heterodimers, and, the mitotic chromosomal exclusions of HDAC1 and 2 are largely due to the displacement of HDAC-associated proteins and transcription factors, which recruit HDACs, from chromosomes during mitosis. We further explored the role of un- or monomodified HDAC1 and 2 complexes in immediate-early genes (IEGs), FOSL1 (FOS-like antigen-1) and MCL1 (Myeloid cell leukemia-1), regulation. Dynamic histone acetylation is an important regulator of these genes that are overexpressed in a number of diseases and cancers. We hypothesized that transcription dependent recruitment of HDAC1 and 2 complexes over the gene body regions plays a regulatory role in transcription and splicing regulation of these genes. We present evidence that CK2-catalyzed increased phosphorylation of HDAC1 and 2 regulates the formation of distinct corepressor complexes containing either HDAC1 or HDAC2 homodimers during mitosis, which might target cellular factors. Furthermore, the exclusion of HDAC-recruiting proteins is the major factor for their displacement from mitotic chromosomes. We further demonstrated that un- or monophosphorylated HDAC1 and 2 are associated with gene body of FOSL1 in a transcription dependent manner. However, HDAC inhibitors prevented FOSL1 activation independently of the nucleosome response pathway, which is required for IEG induction. Interestingly, our mass spectrometry results revealed that HDAC1 and 2 interact with a number of splicing proteins, in particular, with serine/arginine-rich splicing factor 1 (SRSF1). HDAC1 and 2 are co-occupied with SRSF1 over gene body regions of FOSL1 and MCL1, regardless of underlying splicing mechanisms. Using siRNA-mediated knockdown approaches and HDAC inhibitors, we demonstrated that alternative splicing of MCL1 is regulated by RNA-directed localized changes in the histone acetylation levels at the alternative exon. The change in histone acetylation levels correlates with the increased transcription elongation and results in change in MCL1 splicing by exon skipping mechanism. Taken together, our results contribute to further understanding of how the multi-faceted HDAC1 and 2 complexes can be regulated and function in various processes, including, but not limited to, transcription regulation and alternative splicing. This can be an exciting area of future research for therapeutic interventions.
22

Characterization of SUDS3 as a BRMS1 family member in breast cancer

Silveira, Alexandra C. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed Feb. 13, 2009). Includes bibliographical references (p. 73-93).
23

Roles of class II histone deacetylases in the cardiovascular system

Chang, Shurong. January 2005 (has links)
Thesis (Ph.D.) -- University of Texas Southwestern Medical Center at Dallas, 2005. / Embargoed. Vita. Bibliography: 170-172.
24

O-alkyl imidate formation via Staudinger ligation design synthesis and biological evaluation of novel reductively activated histone deacetylase inhibitors /

Restituyo, José A. January 1900 (has links)
Thesis (Ph.D.)--University of Wisconsin--Madison, 2006 / eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
25

Modulation of folate receptor B for drug targeting in acute myelogenous leukemia

Qi, Huiling. January 2005 (has links)
Thesis (Ph.D.)--Medical University of Ohio, 2005. / "In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Medical Sciences." Major advisor: Manohar Ratnam. Includes abstract. Document formatted into pages: iv, 158 p. Title from title page of PDF document. Title at ETD Web site: Modulation of folate receptor beta for drug targeting in acute myelogenous leukemia. Non-Latin script record Bibliography: pages 67-70, 106-109, 127-156.
26

O-alkyl imidate formation via Staudinger ligation : design synthesis and biological evaluation of novel reductively activated histone deacetylase inhibitors /

Restituyo, José A. January 1900 (has links)
Thesis (Ph.D.)--University of Wisconsin--Madison, 2006 / Includes bibliographical references. Also available on the Internet.
27

Estudo da expressão dos genes de classe I das histonas desacetilases (HDACs 1,2,3 e 8) em Leucemia Linfóide Aguda de crianças e adolescentes / Class 1 Histone Deacetylases Gene Expression in Childhood Acute Lymphoblastic Leukemia

Daniel Antunes Moreno 15 May 2008 (has links)
A Leucemia Linfóide Aguda (LLA) é uma doença heterogênea em relação à biologia e ao prognóstico. Além de alterações genéticas, anormalidades epigenéticas, estão estreitamente relacionadas ao processo de carcinogênese e entre os mecanismos epigenéticos, a acetilação das histonas é um componente essencial para a regulação da estrutura da cromatina e atividade transcricional. Esse processo é mediado pelas histonas acetiltransferases (HATs). Por outro lado, a desacetilação, por meio das histonas desacetilases (HDACs), está relacionada à condensação da cromatina e repressão transcricional. A expressão anormal das HDACs tem sido associada ao processo de leucemogênese, revelando ser uma área promissora na caracterização de grupos de risco e tratamento do câncer. Os objetivos deste trabalho foram avaliar a expressão dos genes da classe I de HDACs (HDAC 1, 2, 3 e 8), correlacionar os resultados com as características clínicas e de prognóstico (idade, gênero, grupo de risco, contagem inicial de blastos, imunofenótipo, resposta ao tratamento, doença residual mínima nos dias 14 e 18 e a sobrevida livre de eventos) em 46 amostras consecutivas de medula óssea de crianças e adolescentes portadores de LLA; comparar e correlacionar a expressão dos genes estudados entre as amostras de pacientes portadores LLA e 10 amostras de medula óssea sem doença hematológica. A análise da expressão gênica foi realizada através da técnica de PCR em Tempo Real pelo método TaqMan®. Foi observado um aumento da expressão do gene HDAC1 nas amostras dos pacientes bons respondedores ao ix tratamento. O gene HDAC2 foi mais expresso no grupo de pacientes do gênero masculino (p=0,038). Esse gene também mostrou uma expressão aumentada nos pacientes de alto risco (p=0,060) e com sobrevida menor (p=0,065), entretanto os valores encontrados não foram estatisticamente significativos. Além disso, foi observada uma expressão aumentada dos genes HDAC2 (p=0,007), HDAC3 (p=0,014) e HDAC8 (p=0,002) em amostras de pacientes com LLA quando comparadas às amostras de medula óssea sem doença hematológica. Houve correlação entre a expressão de todos os genes de classe I das HDACs, exceto entre HDAC1 e HDAC8. Os resultados obtidos nesse trabalho sugerem que as HDACs de classe I, podem representar importantes alvos para futuros estudos em LLA, no entanto são necessários de testes funcionais para confirmar estes resultados. / Acute Lymphoblastic Leukemia (ALL) is a heterogeneous disease with distinct biologic and prognostic groups. In addition to genetic alterations, epigenetic processes play an important role in carcinogenesis, among which histone acetylation/deacetylation is crucial for chromatin modulation structure and transcriptional activity. Histone acetylation is regulated by the enzyme histone acetyl transferases (HATs). On the other hand, the deacetylation process is regulated by histone deacetylases (HDACs) enzymes, which is associated with the chromatin condensation and transcriptional repression. Abnormal expression of HDACs is a common feature of cancer and has revealed a promising field to stratify cancer treatment and risk classification. The investigation of these expression profiles may represent an important clinical factor for diagnosis and management of hematological malignances. The objectives of the present study were to analyze the expression profile of the class 1 HDACs (HDAC1, 2, 3 and 8) genes in bone marrow samples obtained from 46 childhood ALL samples, to correlate the results with prognostic and clinical features (age, gender, risk group, immunophenotype, treatment response, minimal residual disease and event free survival) of the patients; to evaluated differences in gene expression between ALL samples and 10 bone marrow samples without hematological disease and to verify the correlation of these genes. The gene expression analysis were made using xi TaqMan real-time polymerase chain reaction. A higher expression of HDAC1 in patients with better treatment response was observed. The HDAC2 showed a higher expression in male gender (p=0,038). HDAC2 also showed a higher expression for higher risk (p=0,060) and lower survival patients (p=0,065), however the statistical analysis did not show significant results. Furthermore, there was a higher expression of HDAC2 (p=0,007), HDAC3 (p=0,014) and HDAC8 (p=0,002) in ALL samples when compared to healthy donors. Class I HDACs showed correlation in gene expression, except for HDAC1 and HDAC8. These results suggest that class I HDACs can represent important targets for ALL research; however, it is necessary to perform functional investigation to confirm these results.
28

Balancing Histone Deacetylase (HDAC) Inhibition and Druglikeness: Biological and Physicochemical Evaluation of Class I Selective HDAC Inhibitors

Schäker-Hübner, Linda, Haschemi, Reza, Büch, Thomas, Kraft, Fabian B., Brumme, Birke, Schöler, Andrea, Jenke, Robert, Meiler, Jens, Aigner, Achim, Bendas, Gerd, Hansen, Finn K. 16 August 2023 (has links)
Herein we report the structure-activity and structure-physicochemical property relationships of a series of class I selective ortho-aminoanilides targeting the “foot-pocket” in HDAC1&2. To balance the structural benefits and the physicochemical disadvantages of these substances, we started with a set of HDACi related to tacedinaline (CI-994) and evaluated their solubility, lipophilicity (log D7.4) and inhibition of selected HDAC isoforms. Subsequently, we selected the most promising “capless” HDACi and transferred its ZBG to our previously published scaffold featuring a peptoid-based cap group. The resulting hit compound 10c (LSH-A54) showed favorable physicochemical properties and is a potent, selective HDAC1/2 inhibitor. The following evaluation of its slow binding properties revealed that LSH-A54 binds tightly to HDAC1 in an induced-fit mechanism. The potent HDAC1/2 inhibitory properties were reflected by attenuated cell migration in a modified wound healing assay and reduced cell viability in a clonogenic survival assay in selected breast cancer cell lines.
29

Stem Cell Biology and Strategies for Therapeutic Development in Degenerative Diseases and Cancer

Alvarez, Angel A. 01 January 2011 (has links)
Stem cell biology is an exciting field that will lead to significant advancements in science and medicine. We hypothesize that inducing the expression of stem cell genes, using the embryonic stem cell gene nanog, will reprogram cells and dedifferentiate human mesenchymal stem cells into pluripotent stem cells capable of neural differentiation. The aims of initial studies are as follows: Aim 1: Demonstrate that forced expression of the embryonic stem cell gene nanog induces changes in human mesenchymal stem cells to an embryonic stem cell-like phenotype. Aim 2: Demonstrate that induced expression of nanog up-regulates the expression of multiple embryonic stem cell markers and expands the differentiation potential of the stem cells. Aim 3: Demonstrate that these nanog-expressing stem cells have the ability to differentiate along neural lineages in vitro and in vivo, while mock-transfected cells have an extremely limited capacity for transdifferentiation. Alternatively, we hypothesize that embryonic stem cell genes can become activated in malignant gliomas and differentially regulate the subpopulation of cancer stem cells. This study examines the role of embryonic stem cell genes in transformed cells, particularly cancer stem cells. These studies explore has the following objectives: Aim 1: Isolate different sub-populations of cells from tumors and characterize cells with stem cell-like properties. Aim 2: Characterize the expression of embryonic stem cell markers in the sub-population of cancer stem cells. Aim 3: Examine the effects of histone deacetylase inhibitors at inhibiting the growth and reducing the expression of stem cell markers. Our research has demonstrated the potential of the embryonic transcription factor, nanog, at inducing dedifferentiation of human bone marrow mesenchymal stem cells and allowing their recommitment to a neural lineage. Specifically, we used viral and non-viral vectors to induce expression of NANOG, which produced an embryonic stem cell-like morphology in transduced cells. We characterized these cells using real-time PCR and immunohistochemical staining and find an up-regulation of genes responsible for pluripotency and self-renewal. Embryonic stem cell markers including Sox2, Oct4 and TERT were up-regulated following delivery of nanog. The role of nanog in the expression of these markers was further demonstrated in our induced-differentiation method where we transfected embryonic stem cell-like cells, that have been transduced with nanog flanked by two loxP sites, with a vector containing Cre-recominase. We tested the ability of these nanog-transfected cells to undergo neural differentiation in vitro using a neural co-culture system or in vivo following intracranial transplantation. Our next study characterized patient-derived glioblastoma cancer stem cells. We found that cells isolated from serum-free stem cell cultures were enriched for stem cell markers and were more proliferative than the bulk population of cells grown in convention serum-supplemented media. These cancer stem cells expressed embryonic stem cell markers NANOG and OCT4 whereas non-tumor-derived neural stem cells do not. Moreover, the expression of stem cell markers was correlated with enhanced proliferation and could serve as a measure of drug effectiveness. We tested two different histone deacetylase inhibitors, trichostatin A and valproic acid, and found that both inhibited proliferation and significantly reduced expression of stem cell markers in our cancer stem cell lines. These data demonstrate the potential use of stem cell genes as therapeutic markers and supports the hypothesis that cancer stem cells are a major contributor to brain tumor malignancy.
30

A seasonal switch in histone deacetylase gene expression in the hypothalamus and their capacity to modulate nuclear signaling pathways

Stoney, P.N., Rodrigues, D., Helfer, Gisela, Khatib, T., Ashton, A., Hay, E.A., Starr, R., Kociszewska, D., Morgan, P.J., McCaffery, P.J. 13 December 2016 (has links)
Yes / Seasonal animals undergo changes in physiology and behavior between summer and winter conditions. These changes are in part driven by a switch in a series of hypothalamic genes under transcriptional control by hormones and, of recent interest, inflammatory factors. Crucial to the control of transcription are histone deacetylases (HDACs), generally acting to repress transcription by local histone modification. Seasonal changes in hypothalamic HDAC transcripts were investigated in photoperiod-sensitive F344 rats by altering the day-length (photoperiod). HDAC4, 6 and 9 were found to change in expression. The potential influence of HDACs on two hypothalamic signaling pathways that regulate transcription, inflammatory and nuclear receptor signaling, was investigated. For inflammatory signaling the focus was on NF-κB because of the novel finding made that its expression is seasonally regulated in the rat hypothalamus. For nuclear receptor signaling it was discovered that expression of retinoic acid receptor beta was regulated seasonally. HDAC modulation of NF-κB-induced pathways was examined in a hypothalamic neuronal cell line and primary hypothalamic tanycytes. HDAC4/5/6 inhibition altered the control of gene expression (Fos, Prkca, Prkcd and Ptp1b) by inducers of NF-κB that activate inflammation. These inhibitors also modified the action of nuclear receptor ligands thyroid hormone and retinoic acid. Thus seasonal changes in HDAC4 and 6 have the potential to epigenetically modify multiple gene regulatory pathways in the hypothalamus that could act to limit inflammatory pathways in the hypothalamus during long-day summer-like conditions. / Biotechnology and Biological Sciences Research Council (BBSRC)

Page generated in 0.0888 seconds