• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 16
  • 8
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 122
  • 41
  • 26
  • 22
  • 17
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Methane and Solid Carbon Based Solid Oxide Fuel Cells

Chien, Chang-Yin 07 April 2011 (has links)
No description available.
52

Preparation of Active, Stable Supported Iron Catalysts and Deactivation by Carbon of Cobalt Catalysts for Fischer-Tropsch Synthesis

Keyvanloo, Kamyar 01 November 2014 (has links) (PDF)
The first half of this dissertation reports the development of supported Fe FT catalysts including the effects of various, carefully chosen preparation methods on the performance of alumina-supported iron/copper/potassium (FeCuK/Al2O3); it was determined that non-aqueous slurry impregnation and co-impregnation yielded catalysts with activities as high as any reported in the literature. Furthermore, the effects of support properties including pore size, hydroxyl group concentration, and support stabilizer were investigated for FeCuK/Al2O3 catalysts containing 20 or 40% Fe. For the first time, we report the performance of a supported Fe FT catalyst that is not only more active and stable than any supported Fe catalyst previously reported, but also has activity equivalent to that of the most active, unsupported catalysts. More importantly, the catalyst is extremely stable as evidenced by the fact that after 700 h on stream, its activity and productivity are still increasing. These catalyst properties result from the use of a novel γ-alumina support material doped with silica and pretreated at 1100°C. This unique support has a high pore volume, large pore diameter, and unusually high thermal stability. The ability to pretreat this support at 1100°C enables preparation of a material having a low number of acid sites and weak metal oxide-support interactions, all desirable properties for an FT catalyst. The second half of this dissertation investigates the effects of operating conditions including the partial pressures of CO and H2 and temperature on the deactivation by carbon of 25 wt% Co/ 0.25 wt% Pt/Al2O3 catalyst. It also reports the kinetics of the main FT reaction on this catalyst. As temperature increases, the H2 and CO orders for the main reaction (in the absence of deactivation) become more positive and more negative, respectively. A new mechanism was proposed to account for the inhibition effect of CO at high reaction temperatures, which includes H-assisted dissociation of CO to C* and OH*. Further, twelve samples of the CoPt/Al2O3 catalyst were tested over a period of 800 hours and XCO < 24%, each at a different set of CO and H2 partial pressures and temperature (220-250°C). At reaction temperature of 230°C, increasing PCO or PH2 increases the deactivation rate; possibly due to formation of polymeric carbons. The H2 and CO partial pressure orders for the deactivation rate at 230°C were found to be 1.12 and 1.43, respectively using a generalized-power-law-expression (GPLE) with limiting activity of 0.7 and 1st order deactivation. For a H2/CO of 2 (PH2 = 10 bar and PCO = 5 bar) the deactivation rate increases as process temperature increases from 220 to 250°C with an activation energy of 81 kJ/mol. However, at higher CO partial pressure (PCO = 10 bar) the deactivation rate for the Co catalyst of this study decreases with increasing temperature; this can possibly be attributed to the formation of more active cobalt sites at higher temperatures due to surface reconstruction.
53

Poisoning and Sulfation on Vanadia SCR Catalyst

Guo, Xiaoyu 13 June 2006 (has links) (PDF)
Deactivation of titania-supported vanadia commercial SCR catalysts exposed to flue gases from both coal and coal-biomass co-firing boilers were investigated. BET surface area and average pore diameter measurements on both fresh and exposed commercial catalyst samples indicated pore plugging occurred to exposed catalyst samples. ESEM analyses showed fouling on catalyst surface, and poison deposition on both catalyst surface and inner pores. Activity assessments of commercial monolith catalysts with various exposures (time and fuel type) indicated that catalyst deactivation involves fouling, pore plugging, and poisoning. Different mechanisms may dominate depending on exposure time, catalyst properties, and combustion environment. Better controlled lab-scale investigations involved poisoning and sulfation of SCR vanadia/titania catalysts synthesized with an incipient impregnation method. In situ FTIR spectroscopy indicate that K, Na, and Ca (among others materials) reduce, and sulfation and tungsten increase ammonia adsorption intensity on Brønsted acid sites. Activity measurements by MS showed K, Na, and Ca poison SCR catalysts, and sulfation and tungsten enhance SCR NOx reduction activity. Both the decrease and increase of catalyst activity arise from the decrease and increase of the pre-exponential factor (A) correspondingly. Moreover, the decrease of NO reduction activity from each poison are consistent with the IR peak area decrease of ammonia adsorbed on Brønsted acid site caused by the corresponding poison but not Lewis acid sites. Therefore, Brønsted acid sites participate more actively in SCR reaction than Lewis acid sites. However, Brønsted acid sites itself do not possess NOx reduction activity as indicated by zero NO conversion on 9% W/Ti which shows large amounts of Brønsted acid sites population. Therefore, dual acid (Brønsted) -redox (vanadia) sites are suggested to provide the active center during catalytic reduction cycle with weakly adsorbed or gas phase NOx reacts with surface adsorbed ammonia. In addition, in situ FTIR spectroscopy combined with XPS analyses indicate that sulfate does not form on vanadia sites but on titania sites.
54

In-Situ Surface Science Studies of the Interaction between Sulfur Dioxide and Two-Dimensional Palladium Loaded-Cerium/Zirconium mixed Metal Oxide Model Catalysts

Romano, Esteban Javier 07 May 2005 (has links)
Cerium and zirconium oxides are important materials in industrial catalysis. Particularly, the great advances attained in the past 30 years in controlling levels of gaseous pollutants released from internal combustion engines can be attributed to the development of catalysts employing these materials. Unfortunately, oxides of sulfur are known threats to the longevity of many catalytic systems by irreversibly interacting with catalytic materials over some time period. In this work, polycrystalline cerium-zirconium mixed-metal-oxide (MMO) solid solutions of various molar ratios were synthesized. High resolution x-ray photoelectron spectroscopy (XPS) was used to characterize the model system. The spectral data was examined for revelation of the surface species that form on these metal oxides after insitu exposures to sulfur dioxide at various temperatures. The model catalysts were exposed to sulfur dioxide using a custom modified in-situ reaction cell. A reliable sample platen heater was designed and built to allow the exposure of the model system at temperatures up to 673 K. The results of this study demonstrate the formation of sulfate and sulfite adsorbed sulfur species. Temperature and compositional dependencies were displayed, with higher temperatures and ceria molar ratios displaying a larger propensity for forming surface sulfur species. In addition to analysis of sulfur photoemission, the photoemission regions of oxygen, zirconium, and cerium were examined for the materials used in this study before and after the aforementioned treatments with sulfur dioxide. The presence of surface hydroxyl groups was observed and metal oxidation state changes were probed to further enhance the understanding of sulfur dioxide adsorption on the synthesized materials. Palladium loaded mixed-metal oxides were synthesized using a unique solid-state methodology to probe the effect of palladium addition on sulfur dioxide adsorption. Microscopic characterization of the wafers made using palladium-loaded MMO materials provide justification for using this material preparation method in surface science studies. The addition of palladium to this model system is shown to have a strong effect on the magnitude of adsorption for sulfur dioxide on some material/exposure condition combinations. Ceria/zirconia sulfite and sulfate species are identified on the palladium-loaded MMO materials with adsorption sites located on the exposed oxide sites.
55

Decalin Dehydrogenation for In-Situ Hydrogen Production to Increase Catalytic Cracking Rate of n-Dodecane

Bruening, Christopher 05 June 2018 (has links)
No description available.
56

Analysis of the hollow fiber membrane reactor using immobilized enzyme with deactivation

Hong, Eock Kee January 1986 (has links)
No description available.
57

Morphological Property Variation and Ionic Transfer Behaviors of Solid Reactants in Fe-based and CaO-based Chemical Looping Processes

Sun, Zhenchao 16 August 2012 (has links)
No description available.
58

Production of Highly-Ordered Nanocellular Foams by UV-Induced Chemical Foaming with Self-Assembled Block Copolymers / 自己組織化ブロック共重合体を用いた紫外線誘起化学発泡による高秩序ナノセルラー発泡体の作製

Rattanakawin, Podchara 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23930号 / 工博第5017号 / 新制||工||1783(附属図書館) / 京都大学大学院工学研究科化学工学専攻 / (主査)教授 大嶋 正裕, 教授 山子 茂, 教授 佐野 紀彰 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
59

Mineral Surface Catalyzed Polymerization Of Estrogen And Microbial Deactivation By Fe3+-Saturated Montmorillonite: A Potentially Low Cost Material For Water Decontamination

Qin, Chao 07 February 2017 (has links)
With advantages of high cation exchange capacity, swelling-shrinking property and large specific surface area, monmtorillonite is chosen as a carrier and modified with Fe3+ saturation for estrogen decontamination. 17β-Estradiol (βE2) has highest estrogenic activity among estrogens and is selected as representative compound. Rapid βE2 transformation in the presence of Fe3+ - saturated montmorillonite in aqueous system was observed and βE2 oligomers were the major βE2 transformation products. About 98% of βE2 were transformed into oligomers which are >107 times less water-soluble than βE2 and therefore are much less bioavailable and mobile. Fe3+ -saturated montmorillonite catalysis achieved highest βE2 removal efficiency at neutral solution pH and higher temperature. Common cations did not have impact on the reaction efficiency. Dissolved organic matter slightly reduced βE2 removal efficiency. Regardless of wastewater source, ~40% βE2 removal efficiency was achieved for wastewater effluents when they were exposed to same dosage of Fe3+ -saturated montmorillonite as that for simple water systems which achieved ~83% removal efficiency. For real wastewater that contained higher organic matter, higher dosage of Fe3+ -saturated montmorillonite would be needed to create available reaction sites for βE2. This thesis also reports that Fe3+ -saturated montmorillonite effectively deactivate wastewater microorganisms. Microbial deactivation rate was 92±0.6% when secondary wastewater effluent was mixed with Fe3+ -saturated montmorillonite at 35 mg/mL for 30 min, and further increased to 97±0.6% after 4-h exposure. Freeze-drying Fe3+ -saturated montmorillonite iii after each usage resulted in 82±0.5% microbial deactivation efficiency even after fourth consecutive use. For convenient application, Fe3+ -saturated montmorillonite was further impregnated into filter paper through wet-end addition and formed uniformly impregnated paper. Scanning electron microscopy (SEM) imaging showed Fe3+ -saturated montmorillonite was evenly dispersed over cellulose fiber surface. When filtering 50 mL and 200 mL water spiked with live Escherichia coli (E. coli) cells at 3.67×108 CFU/mL, Fe3+ -saturated montmorillonite impregnated paper with 50% mineral weight loading deactivated E. coli with 99% and 77%, respectively. Dielectrophoresis and impedance analysis of filtrate confirmed that the deactivated E. coli passing through Fe3+ -saturated montmorillonite paper did not have trapping response due to higher membrane permeability and conductivity. The results demonstrate feasibility of using Fe3+ -saturated montmorillonite impregnated paper for convenient point-of-use drinking water disinfection. / Ph. D.
60

Development of Practical Organotellurium-Mediated Radical Polymerization Based on Polymerization and Separation in a Two-phase System / 二相系での重合・分離を基盤とする実用的有機テルル媒介ラジカル重合の開発

Jiang, Yuhan 23 May 2023 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第24814号 / 工博第5157号 / 新制||工||1985(附属図書館) / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 山子 茂, 教授 辻井 敬亘, 教授 大内 誠 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM

Page generated in 0.0818 seconds