1 |
Decentralized optimization for energy efficiency under stochasticity / Optimisation décentralisée pour l’efficacité énergétiquePacaud, François 25 October 2018 (has links)
Les réseaux électriques doivent absorber une production d'énergie renouvelable croissante, de façon décentralisée. Leur gestion optimale amène à des problèmes spécifiques. Nous étudions dans cette thèse la formulation mathématique de tels problèmes en tant que problèmes d'optimisation stochastique multi-pas de temps. Nous analysons plus spécifiquement la décomposition en temps et en espace de tels problèmes. Dans la première partie de ce manuscrit, Décomposition temporelle pour l'optimisation de la gestion de microgrid domestique, nous appliquons les méthodes d'optimisation stochastique à la gestion de microgrid de petite taille. Nous comparons différents algorithmes d'optimisation sur deux exemples: le premier considère une microgrid domestique équipée avec une batterie et une centrale de micro-cogénération; le deuxième considère quant à lui une autre microgrid domestique, cette fois équipée avec une batterie et des panneaux solaires. Dans la seconde partie, Décomposition temporelle et spatiale de problèmes d'optimisation de grande taille, nous étendons les études précédentes à des microgrids de plus grandes tailles, avec différentes unités et stockages connectés ensemble. La résolution frontale de tels problèmes de grande taille par Programmation Dynamique s'avère impraticable. Nous proposons deux algorithmes originaux pour pallier ce problème en mélangeant une décomposition temporelle avec une décomposition spatiale --- par les prix ou par les ressources. Dans la dernière partie, Contributions à l'algorithme Stochastic Dual Dynamic Programming, nous nous concentrons sur l'algorithme emph{Stochastic DualDynamic Programming} (SDDP) qui est actuellement une méthode de référence pour résoudre des problèmes d'optimisation stochastique multi-pas de temps. Nous étudions un nouveau critère d'arrêt pour cet algorithme basé sur une version duale de SDDP, qui permet d'obtenir une borne supérieure déterministe pour le problème primal / New energy systems are designed to absorb a large share of renewableenergy in a decentralized fashion. Their optimized management raises specificissues. We study mathematical formulation as large scale multistagestochastic optimization problems. We focus on time and space decompositionmethods in a stochastic setting.In the first part of this manuscript, Time decomposition inoptimization and management of home microgrids, we apply stochasticoptimization algorithms to the management of small scale microgrids. We compare different optimization algorithms on two examples:a domestic microgrid equipped with a microCombined Heat and Power generator and a battery;a domestic microgrid equipped with a battery and solar panels.In the second part, Mixing time and spatial decomposition inlarge-scale optimization problems, we extend the previous studies tolarger microgrids, where different units and storage devices are connected together. As a direct resolution by Dynamic Programming of such large scale systemsis untractable, we propose original algorithms mixing time decomposition on the one hand, and price and resource spatial decomposition on the other hand.In the third part, Contributions to Stochastic Dual Dynamic Programming,we focus on the Stochastic Dual Dynamic Programming (SDDP) algorithm,a well-known algorithm to solve multistage stochastic optimizationproblems. We present a new stopping criteria based on a dual versionof SDDP which gives a deterministic upper-bound for the primal problem
|
2 |
Etude de stratégies de gestion énergétique en temps réel à l'échelle multizone / Study of real time energy control strategies at multi-zone scaleFrapin, Marie 21 September 2018 (has links)
Pour faciliter la transition énergétique vers la réduction de la consommation des énergies fossiles, la réduction des émissions de CO2 et l’intégration des sources d’énergie renouvelables, il convient d’étudier des stratégies permettant d’adapter en temps réel la gestion énergétique de manière optimale par rapport aux contraintes extérieures et intérieures du bâtiment. Des leviers d’action existent à l’échelle de l’îlot comme la mutualisation des productions et des consommations. Cette thèse présente l’application de techniques d’optimisation au développement de stratégies de gestion du chauffage électrique d’un bâtiment multizone comportant des logements et des bureaux. Pour réduire les temps de calcul par rapport à une approche de résolution globale d’un problème d’optimisation à grande échelle, les méthodes de décomposition-coordination ont été étudiées. Ces méthodes permettent de résoudre des sous-problèmes d’optimisation à l’échelle de chaque zone et de réintégrer les couplages entre zones (couplages thermiques et partage d’une ressource) avec une étape de coordination. Une méthode décomposée-coordonnée a été retenue pour chaque type de couplage permettant la mise en place d’une gestion en temps réel à l’échelle multizone. / To facilitate the energy transition towards the reduction of fossil fuels consumption, CO2 emissions and the integration of renewable energy sources, it is necessary to study realtime management strategies to adapt energy management in an optimal way according to external and internal perturbations and the evolution of the building. Solutions exist at the scale of blocks of buildings such as production and consumption pooling. This thesis presents the development of real-time management strategies, using optimisation techniques, for the electric heating of a multi-zone building mixing residential and tertiary uses. To decrease computation time compared to a global resolution approach of large-scale optimisation problems, decomposition-coordination methods were studied. These methods consist in solving sub-problems of optimisation in each zone and reintegrating the links between zones (thermal couplings and resource sharing) using a coordination step. One of these methods was chosen for each type of coupling allowing the implementation of real-time management at a multi-zone scale.
|
3 |
Subgradient-based Decomposition Methods for Stochastic Mixed-integer Programs with Special StructuresBeier, Eric 2011 December 1900 (has links)
The focus of this dissertation is solution strategies for stochastic mixed-integer programs with special structures. Motivation for the methods comes from the relatively sparse number of algorithms for solving stochastic mixed-integer programs. Two stage models with finite support are assumed throughout. The first contribution introduces the nodal decision framework under private information restrictions. Each node in the framework has control of an optimization model which may include stochastic parameters, and the nodes must coordinate toward a single objective in which a single optimal or close-to-optimal solution is desired. However, because of competitive issues, confidentiality requirements, incompatible database issues, or other complicating factors, no global view of the system is possible.
An iterative methodology called the nodal decomposition-coordination algorithm (NDC) is formally developed in which each entity in the cooperation forms its own nodal deterministic or stochastic program. Lagrangian relaxation and subgradient optimization techniques are used to facilitate negotiation between the nodal decisions in the system without any one entity gaining access to the private information from other nodes. A computational study on NDC using supply chain inventory coordination problem instances demonstrates that the new methodology can obtain good solution values without violating private information restrictions. The results also show that the stochastic solutions outperform the corresponding expected value solutions.
The next contribution presents a new algorithm called scenario Fenchel decomposition (SFD) for solving two-stage stochastic mixed 0-1 integer programs with special structure based on scenario decomposition of the problem and Fenchel cutting planes. The algorithm combines progressive hedging to restore nonanticipativity of the first-stage solution, and generates Fenchel cutting planes for the LP relaxations of the subproblems to recover integer solutions.
A computational study SFD using instances with multiple knapsack constraint structure is given. Multiple knapsack constrained problems are chosen due to the advantages they provide when generating Fenchel cutting planes. The computational results are promising, and show that SFD is able to find optimal solutions for some problem instances in a short amount of time, and that overall, SFD outperforms the brute force method of solving the DEP.
|
4 |
Risque et optimisation pour le management d'énergies : application à l'hydraulique / Risk and optimization for power management : application to hydropower planningAlais, Jean-Christophe 16 December 2013 (has links)
L'hydraulique est la principale énergie renouvelable produite en France. Elle apporte une réserve d'énergie et une flexibilité intéressantes dans un contexte d'augmentation de la part des énergies intermittentes dans la production. Sa gestion soulève des problèmes difficiles dus au nombre des barrages, aux incertitudes sur les apports d'eau et sur les prix, ainsi qu'aux usages multiples de l'eau. Cette thèse CIFRE, effectuée en partenariat avec Electricité de France, aborde deux questions de gestion hydraulique formulées comme des problèmes d'optimisation dynamique stochastique. Elles sont traitées dans deux grandes parties.Dans la première partie, nous considérons la gestion de la production hydroélectrique d'un barrage soumise à une contrainte dite de cote touristique. Cette contrainte vise à assurer une hauteur de remplissage du réservoir suffisamment élevée durant l'été avec un niveau de probabilité donné. Nous proposons différentes modélisations originales de ce problème et nous développons les algorithmes de résolution correspondants. Nous présentons des résultats numériques qui éclairent différentes facettes du problème utiles pour les gestionnaires du barrage.Dans la seconde partie, nous nous penchons sur la gestion d'une cascade de barrages. Nous présentons une méthode de résolution approchée par décomposition-coordination, l'algorithme Dual Approximate Dynamic Programming (DADP). Nousmontrons comment décomposer, barrage par barrage, le problème de la cascade en sous-problèmes obtenus en dualisant la contrainte de couplage spatial ``déversé supérieur = apport inférieur''. Sur un cas à trois barrages, nous sommes en mesure de comparer les résultats de DADP à la solution exacte (obtenue par programmation dynamique), obtenant desgains à quelques pourcents de l'optimum avec des temps de calcul intéressants. Les conclusions auxquelles nous sommes parvenu offrent des perspectives encourageantes pour l'optimisation stochastique de systèmes de grande taille / Hydropower is the main renewable energy produced in France. It brings both an energy reserve and a flexibility, of great interest in a contextof penetration of intermittent sources in the production of electricity. Its management raises difficulties stemming from the number of dams, from uncertainties in water inflows and prices and from multiple uses of water. This Phd thesis has been realized in partnership with Electricité de France and addresses two hydropower management issues, modeled as stochastic dynamic optimization problems. The manuscript is divided in two parts. In the first part, we consider the management of a hydroelectric dam subject to a so-called tourist constraint. This constraint assures the respect of a given minimum dam stock level in Summer months with a prescribed probability level. We propose different original modelings and we provide corresponding numerical algorithms. We present numerical results that highlight the problem under various angles useful for dam managers. In the second part, we focus on the management of a cascade of dams. We present the approximate decomposition-coordination algorithm called Dual Approximate Dynamic Programming (DADP). We show how to decompose an original (large scale) problem into smaller subproblems by dualizing the spatial coupling constraints. On a three dams instance, we are able to compare the results of DADP with the exact solution (obtained by dynamic programming); we obtain approximate gains that are only at a few percents of the optimum, with interesting running times. The conclusions we arrived at offer encouraging perspectives for the stochastic optimization of large scale problems
|
Page generated in 0.1568 seconds