• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 10
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Amélioration de connectivité fonctionnelle par utilisation de modèles déformables dans l'estimation de décompositions spatiales des images de cerveau / Enhancement of functional brain connectome analysis by the use of deformable models in the estimation of spatial decompositions of the brain images.

Dohmatob, Elvis 26 September 2017 (has links)
Cartographier la connectivité fonctionnelle du cerveau à partir des donnés d'IRMf est devenu un champ de recherche très actif. Cependant, les outils théoriques et pratiques sont limités et plusieurs tâches importantes, telles que la définition empirique de réseaux de connexion cérébrale, restent difficiles en l’absence d'un cadre pour la modélisation statistique de ces réseaux. Nous proposons de développer au niveau des populations, des modèles joints de connectivité anatomique et fonctionnelle et l'alignement inter-sujets des structures du cerveau. Grâce à une telle contribution, nous allons développer des nouvelles procédures d'inférence statistique afin de mieux comparer la connectivité fonctionnelle entre différents sujets en présence du bruit (bruit scanner, bruit physiologique, etc.). / Mapping the functions of the human brain using fMRI data has become a very active field of research. However, the available theoretical and practical tools are limited and many important tasks like the empirical definition of functional brain networks, are difficult to implement due to lack of a framework for statistical modelling of such networks. We propose to develop at the population level, models that jointly perform estimation of functional connectivity and alignment the brain data across the different individuals / subjects in the population. Building upon such a contribution, we will develop new methods for statistical inference to help compare functional connectivity across different individuals in the presence of noise (scanner noise, physiological noise, etc.).
12

Segmentace ledvin z renální perfúzní MR sekvence obrazů / Segmentation of the kidney from the renal perfusion MR image sequences

Jína, Miroslav January 2013 (has links)
This master’s thesis deals with kidney segmentation in perfusion magnetic resonance image sequences. Kidney segmentation is carry out by a few methods such as regionbased techniques, deformable models, specimen-based methods, edge-oriented methods etc. The universal algorithm for patient kidney segmentation still does not exist. Proposed method is an active contour Snake, which is created in programming environment MatLab. Final contours are quantitatively and visually compared to manual kidney segmentation.
13

Segmentation of human retinal layers from optical coherence tomography scans

Hammes, Nathan M. 09 February 2015 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / An algorithm was developed in to efficiently segment the inner-limiting membrane (ILM) and retinal pigmented epithelium (RPE) from spectral domain-optical coherence tomography image volumes. A deformable model framework is described and implemented in which free-form deformations (FFD) are used to direct two deformable sheets to the two high-contrast layers of interest. Improved accuracy in determining retinal thickness (the distance between the ILM and the RPE) is demonstrated against the commercial state-of-the-art Spectralis OCT native segmentation software. A novel adaptation of the highest confidence first (HCF) algorithm is utilized to improve upon the initial results. The proposed adaptation of HCF provides distance-based clique potentials and an efficient solution to layer-based segmentation, reducing a 3D problem to 2D inference.
14

System for Collision Detection Between Deformable Models Built on Axis Aligned Bounding Boxes and GPU Based Culling

Tuft, David Owen 12 January 2007 (has links) (PDF)
Collision detection between deforming models is a difficult problem for collision detection systems to handle. This problem is even more difficult when deformations are unconstrained, objects are in close proximity to one another, and when the entity count is high. We propose a method to perform collision detection between multiple deforming objects with unconstrained deformations that will give good results in close proximities. Currently no systems exist that achieve good performance on both unconstrained triangle level deformations and deformations that preserve edge connectivity. We propose a new system built as a combination of Graphics Processing Unit (GPU) based culling and Axis Aligned Bounding Box (AABB) based culling. Techniques for performing hierarchy-less GPU-based culling are given. We then discuss how and when to switch between GPU-based culling and AABB based techniques.
15

Multi-Object modelling of the face / Modélisation Multi-Objet du visage

Salam, Hanan 20 December 2013 (has links)
Cette thèse traite la problématique liée à la modélisation du visage dans le but de l’analyse faciale.Dans la première partie de cette thèse, nous avons proposé le Modèle Actif d’Apparence Multi-Objet. La spécificité du modèle proposé est que les différentes parties du visage sont traités comme des objets distincts et les mouvements oculaires (du regard et clignotement) sont extrinsèquement paramétrées.La deuxième partie de la thèse porte sur l'utilisation de la modélisation de visage dans le contexte de la reconnaissance des émotions.Premièrement, nous avons proposé un système de reconnaissance des expressions faciales sous la forme d’Action Units. Notre contribution porte principalement sur l'extraction des descripteurs de visage. Pour cela nous avons utilisé les modèles AAM locaux.Le second système concerne la reconnaissance multimodale des quatre dimensions affectives :. Nous avons proposé un système qui fusionne des caractéristiques audio, contextuelles et visuelles pour donner en sortie les quatre dimensions émotionnelles. Nous contribuons à ce système en trouvant une localisation précise des traits du visage. En conséquence, nous proposons l’AAM Multi-Modèle. Ce modèle combine un modèle global extrinsèque du visage et un modèle local de la bouche. / The work in this thesis deals with the problematic of face modeling for the purpose of facial analysis.In the first part of this thesis, we proposed the Multi-Object Facial Actions Active Appearance Model (AAM). The specificity of the proposed model is that different parts of the face are treated as separate objects and eye movements (gaze and blink) are extrinsically parameterized. This increases the generalization capabilities of classical AAM.The second part of the thesis concerns the use of face modeling in the context of expression and emotion recognition. First we have proposed a system for the recognition of facial expressions in the form of Action Units (AU). Our contribution concerned mainly the extraction of AAM features of which we have opted for the use of local models.The second system concerns multi-modal recognition of four continuously valued affective dimensions. We have proposed a system that fuses audio, context and visual features and gives as output the four emotional dimensions. We contribute to the system by finding the precise localization of the facial features. Accordingly, we propose the Multi-Local AAM. This model combines extrinsically a global model of the face and a local one of the mouth through the computation of projection errors on the same global AAM.
16

Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente / Edge segmentation in medical images using the recursive gradient vector flow deformable contours

Llapa Rodríguez, Eduardo Rafael 08 July 2005 (has links)
Devido à variação na qualidade e ao ruído nas imagens médicas, a aplicação de técnicas tradicionais de segmentação é geralmente ineficiente. Nesse sentido, apresenta-se um novo algoritmo a partir de duas técnicas: o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF deformable contours) e a técnica de espaço de escalas utilizando o processo de difusão. Assim, foi realizada uma revisão bibliográfica dos modelos que trabalham com os contornos deformáveis, os quais foram classificados em modelos paramétricos e geométricos. Entre os modelos paramétricos foi escolhido o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF). Esta aproximação oferece precisão na representação de estruturas biológicas não observada em outros modelos. Desta forma, o algoritmo apresentado mapeia as bordas (edge map) e aperfeiçoa a condução da deformação utilizando uma técnica baseada em operações recursivas. Com este cálculo apoiado no comportamento de espaço de escalas, obtem-se a localização e correção de sub-regiões do edge map que perturbam a deformação. Por outro lado, é incorporada uma nova característica que permite ao algoritmo realizar atividades de classificação. O algoritmo consegue determinar a presença ou ausência de um objeto de interesse utilizando um valor mínimo de deformação. O algoritmo é validado através do tratamento de imagens sintéticas e médicas comparando os resultados com os obtidos no modelo tradicional de contornos deformáveis GVF. / Due to the variation of the quality and noise in medical images, the classic image segmentation techniques are usually ineffective. In this work, we present a new algorithm that is composed of two techniques: the gradient vector flow deformable contours (GVF) and the scale-space technique using a diffusion process. A bibliographical revision of the models that work with deformable contours was accomplished, they were classified in parametric and geometric models. Among the parametric models the gradient vector flow deformable contours (GVF) was chosen. This approach offers precision in the representation of biological structures where other models does not. Thus, the algorithm improves the edge map to guide the deformation using recursive operations. With this estimation based on the behavior of the scale-space techniques it is realized, the localization and correction of sub-areas of the edge map that disturb the deformation. On the other hand, it was incorporated a new characteristic that allows the algorithm to accomplish classification activities. That is, the algorithm determines the presence or absence of a target object using a minimal deformation area. Our method was validated on both, simulated images and medical images making a comparison with the traditional GVF deformable contours.
17

Traitement des images multicomposantes par EDP : application à l'imagerie TEP dynamique / Vector-valued image processing with PDEs : application to dynamic PET imaging

Jaouen, Vincent 26 January 2016 (has links)
Cette thèse présente plusieurs contributions méthodologiques au traitement des images multicomposantes. Nous présentons notre travail dans le contexte applicatif difficile de l’imagerie de tomographie d’émission de positons dynamique (TEPd), une modalité d’imagerie fonctionnelle produisant des images multicomposantes fortement dégradées. Le caractère vectoriel du signal offre des propriétés de redondance et de complémentarité de l’information le long des différentes composantes permettant d’en améliorer le traitement. Notre première contribution exploite cet avantage pour la segmentation robuste de volumes d’intérêt au moyen de modèles déformables. Nous proposons un champ de forces extérieures guidant les modèles déformables vers les contours vectoriels des régions à délimiter. Notre seconde contribution porte sur la restauration de telles images pour faciliter leur traitement ultérieur. Nous proposons une nouvelle méthode de restauration par équations aux dérivées partielles permettant d’augmenter le rapport signal sur bruit d’images dégradées et d’en renforcer la netteté. Appliqués à l’imagerie TEPd, nous montrons l’apport de nos contributions pour un problème ouvert des neurosciences, la quantification non invasive d’un radiotraceur de la neuroinflammation. / This thesis presents several methodological contributions to the processing of vector-valued images, with dynamic positron emission tomography imaging (dPET) as its target application. dPET imaging is a functional imaging modality that produces highly degraded images composed of subsequent temporal acquisitions. Vector-valued images often present some level of redundancy or complementarity of information along the channels, allowing the enhancement of processing results. Our first contribution exploits such properties for performing robust segmentation of target volumes with deformable models.We propose a new external force field to guide deformable models toward the vector edges of regions of interest. Our second contribution deals with the restoration of such images to further facilitate their analysis. We propose a new partial differential equation-based approach that enhances the signal to noise ratio of degraded images while sharpening their edges. Applied to dPET imaging, we show to what extent our methodological contributions can help to solve an open problem in neuroscience : noninvasive quantification of neuroinflammation.
18

Un nouvel a priori de formes pour les contours actifs / A new shape prior for active contour model

Ahmed, Fareed 14 February 2014 (has links)
Les contours actifs sont parmi les méthodes de segmentation d'images les plus utilisées et de nombreuses implémentations ont vu le jour durant ces 25 dernières années. Parmi elles, l'approche greedy est considérée comme l'une des plus rapides et des plus stables. Toutefois, quelle que soit l'implémentation choisie, les résultats de segmentation souffrent grandement en présence d'occlusions, de concavités ou de déformation anormales de la forme. Si l'on dispose d'informations a priori sur la forme recherchée, alors son incorporation à un modèle existant peut permettre d'améliorer très nettement les résultats de segmentation. Dans cette thèse, l'inclusion de ce type de contraintes de formes dans un modèle de contour actif explicite est proposée. Afin de garantir une invariance à la rotation, à la translation et au changement d'échelle, les descripteurs de Fourier sont utilisés. Contrairement à la plupart des méthodes existantes, qui comparent la forme de référence et le contour actif en cours d'évolution dans le domaine d'origine par le biais d'une transformation inverse, la méthode proposée ici réalise cette comparaison dans l'espace des descripteurs. Cela assure à notre approche un faible temps de calcul et lui permet d'être indépendante du nombre de points de contrôle choisis pour le contour actif. En revanche, cela induit un biais dans la phase des coefficients de Fourier, handicapant l'invariance à la rotation. Ce problème est résolu par un algorithme original. Les expérimentations indiquent clairement que l'utilisation de ce type de contrainte de forme améliore significativement les résultats de segmentation du modèle de contour actif utilisé. / Active contours are widely used for image segmentation. There are many implementations of active contours. The greedy algorithm is being regarded as one of the fastest and stable implementations. No matter which implementation is being employed, the segmentation results suffer greatly in the presence of occlusion, context noise, concavities or abnormal deformation of shape. If some prior knowledge about the shape of the object is available, then its addition to an existing model can greatly improve the segmentation results. In this thesis inclusion of such shape constraints for explicit active contours is being implemented. These shape priors are introduced through the use of robust Fourier based descriptors which makes them invariant to the translation, scaling and rotation factors and enables the deformable model to converge towards the prior shape even in the presence of occlusion and contextual noise. Unlike most existing methods which compare the reference shape and evolving contour in the spatial domain by applying the inverse transforms, our proposed method realizes such comparisons entirely in the descriptor space. This not only decreases the computational time but also allows our method to be independent of the number of control points chosen for the description of the active contour. This formulation however, may introduce certain anomalies in the phase of the descriptors which affects the rotation invariance. This problem has been solved by an original algorithm. Experimental results clearly indicate that the inclusion of these shape priors significantly improved the segmentation results of the active contour model being used.
19

Segmentação de fronteiras em imagens médicas via contornos deformáveis através do fluxo recursivo do vetor gradiente / Edge segmentation in medical images using the recursive gradient vector flow deformable contours

Eduardo Rafael Llapa Rodríguez 08 July 2005 (has links)
Devido à variação na qualidade e ao ruído nas imagens médicas, a aplicação de técnicas tradicionais de segmentação é geralmente ineficiente. Nesse sentido, apresenta-se um novo algoritmo a partir de duas técnicas: o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF deformable contours) e a técnica de espaço de escalas utilizando o processo de difusão. Assim, foi realizada uma revisão bibliográfica dos modelos que trabalham com os contornos deformáveis, os quais foram classificados em modelos paramétricos e geométricos. Entre os modelos paramétricos foi escolhido o modelo de contornos deformáveis por fluxo do vetor gradiente (GVF). Esta aproximação oferece precisão na representação de estruturas biológicas não observada em outros modelos. Desta forma, o algoritmo apresentado mapeia as bordas (edge map) e aperfeiçoa a condução da deformação utilizando uma técnica baseada em operações recursivas. Com este cálculo apoiado no comportamento de espaço de escalas, obtem-se a localização e correção de sub-regiões do edge map que perturbam a deformação. Por outro lado, é incorporada uma nova característica que permite ao algoritmo realizar atividades de classificação. O algoritmo consegue determinar a presença ou ausência de um objeto de interesse utilizando um valor mínimo de deformação. O algoritmo é validado através do tratamento de imagens sintéticas e médicas comparando os resultados com os obtidos no modelo tradicional de contornos deformáveis GVF. / Due to the variation of the quality and noise in medical images, the classic image segmentation techniques are usually ineffective. In this work, we present a new algorithm that is composed of two techniques: the gradient vector flow deformable contours (GVF) and the scale-space technique using a diffusion process. A bibliographical revision of the models that work with deformable contours was accomplished, they were classified in parametric and geometric models. Among the parametric models the gradient vector flow deformable contours (GVF) was chosen. This approach offers precision in the representation of biological structures where other models does not. Thus, the algorithm improves the edge map to guide the deformation using recursive operations. With this estimation based on the behavior of the scale-space techniques it is realized, the localization and correction of sub-areas of the edge map that disturb the deformation. On the other hand, it was incorporated a new characteristic that allows the algorithm to accomplish classification activities. That is, the algorithm determines the presence or absence of a target object using a minimal deformation area. Our method was validated on both, simulated images and medical images making a comparison with the traditional GVF deformable contours.
20

Rigid and Non-rigid Point-based Medical Image Registration

Parra, Nestor Andres 13 November 2009 (has links)
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.

Page generated in 0.089 seconds