• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 934
  • 232
  • 198
  • 155
  • 148
  • 103
  • 39
  • 36
  • 20
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 2319
  • 247
  • 229
  • 211
  • 206
  • 177
  • 176
  • 163
  • 157
  • 153
  • 139
  • 135
  • 131
  • 130
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Kirchhoff Plates and Large Deformation

Rückert, Jens, Meyer, Arnd 19 October 2012 (has links) (PDF)
In the simulation of deformations of plates it is well known that we have to use a special treatment of the thickness dependence. Therewith we achieve a reduction of dimension from 3D to 2D. For linear elasticity and small deformations several techniques are well established to handle the reduction of dimension and achieve acceptable numerical results. In the case of large deformations of plates with non-linear material behaviour there exist different problems. For example the analytical integration over the thickness of the plate is not possible due to the non-linearities arising from the material law and the large deformations themselves. There are several possibilities to introduce a hypothesis for the treatment of the plate thickness from the strong Kirchhoff assumption on one hand up to some hierarchical approaches on the other hand.
192

A Unified Constitutive Model For Large Elasto-plastic Deformation

Raghavendra, Rao Arun 10 1900 (has links)
Rapid development and stiff competition in material related industries such as the automotive, demand very high precision in end products in very quick time. The transformation of raw material into an intricate-shaped final product involves various intermediate steps like design, material selection, manufacturing processes, etc. In all these steps, an in-depth understanding of material behavior plays an important role. The available traditional methods such as trial-and-error, especially in the case of die design, become highly inefficient in terms of time and money. This, there is a growing interest in simulation of the final product in order to predict different parameters which are important in design and manufacturing. Currently available simulation techniques are based on existing theories of plasticity or large deformation. These theories have been developed over several decades and many theoretical and practical issues have been debated over the years. Though the theories have great utility in understanding and solving some practical problems, there are ranges of applications for which no acceptable models are available. Most of these theories are either materials or process-specific with oversimplified real physical situations using assumptions and empirical relations. Development of field equations from first principles to stimulate elasto-plastic deformation is one such, still a subject of on-going discussion. Materials and composites exhibit hysteresis even at very low stresses, i.e., inelasticity is always present under all types of loading. This observation shows that the representing constitutive relation cannot treat the elastic and plastic deformations separately. The deformation is due to changes in size and shape, and studies with varying strain rates show considerable material sensitivity to the rate of deformation. Therefore, a generalized field equation is developed from first principles in the Eulerian coordinate system using material resistance to changes in size and shape, and their rates. The formulation uses a unified approach representing continuous effect of elastic and plastic strains and strain rates. The field equation involves eight material parameters, viz. bulk modulus, shear modulus, material shear velocity, material bulk viscosity, and four more constants associated with activation points related to deviatoric and volumetric strains and plastic strain rates. The elastic moduli, bulk and shear, are constants, and so also the material viscosities, while plastic stain rates are functions of elastic strain rates. The field equation redces to Cauchy’s equation in the solid limit and Navier-Stokes equation in the fluid limit. Simple experimental measurements are suggested to obtain the numerical values of the material parameters. Uniaxial tension tests are carried out on commercially available mild steel and aluminium alloy at different strain rates to quantify any variations in the values of material parameters during large deformation. Experimental results and the classical understanding of material deformation reveal the constant nature of elastic moduli during large deformation and, from fluids, the viscosities seem to remain constant. Around the yield region, materials experience a sharp increase in absorbed energy which is modeled to represent the plastic strain rates. The variations and contributions from elastic and plastic strains, both volumetric and deviatoric, and the corresponding stresses are observed. The effects of strain rate on plastic stress and energy absorbed are investigated. The model is checked for different materials and loading conditions to ascertain the proposed changes to earlier theories. Available experimental data in the literature are used for this purpose. The analysis shows that, though the overall stress-strain relations of different materials look similar, their internal responses differ. The internal response of a material depends on various microstructural factors, like alloying elements, impurities, etc. The present model is able to capture those internal differences between various materials. Numerical solution of different plasticity problems have to be undertaken to ascertain the applicability, generality, realism, accuracy and feasibility of the model.
193

Hemp nanocellulose : fabrication, characterisation and application

Dasong, Dai January 2015 (has links)
Nanocellulose has gained lots of attentions in recent years due to the development of nanotechnology. Thousands of publications have been reported about the fabrication, characterization and application of nanocellulose, among which most of the nanocelluloses were fabricated from the microcrystalline cellulose (MCC) or pulp, and only two methods about the nanocellulose fabrication have been reported, i.e. sulphuric acid hydrolysis and mechanical treatment. The sulphuric acid method can only obtain low yield of nanocellulose and the mechanical treatment can not fabricate nanocellulose with high crystallinity index (CI) and well separation. These problems limit the scale up of nanocellulose to industrial area. Moreover, none of works has reported the application of nanocellulose for the modification of natural fibres and only a few works reported the reinforcement of epoxy with nanocellulose. In this this research, we fabricated nanocellulose directly from hemp fibres by employing oxidation/sonication method with the aim to solve the main problems of nanocellulose fabrication with sulphuric acid hydrolysis or mechanical. By using this method the yield of nanocellulose could up to 54.11 % and the crystallinity of nanocellulose was 86.59 %. In order to expand the application of nanocellulose, we investigated the modification of natural fibres (hemp) with nanocellulose and the fabrication of nanocomposite. Two-step modification, i.e. dodecyltrimethylammonium bromide (DTAB) pretreatment and nanocellulose modification, was used to modify hemp fibres. In this process, we systematically investigated the deformation of hemp fibres, revealed the mechanism of deformation on the mechanical property of single fibre by using Fourier transform infrared spectroscopy (FTIR) and investigated the effect of deformation on the hemp fibre modification with nanocellulose by using energy dispersive X-ray (EDX). The two-step modification increased the mechanical properties of hemp fibres significantly. Compared with raw hemp fibres, the modulus, tensile stress and tensile strain of the two-step nanocellulose modified hemp fibres increase by 36.13 %, 72.80 % and 67.89 %, respectively. Moreover, two-step modification facilitated the improvement of interfacial property of fibres. This novel natural fibre modification provides new clue to exploit nanocellulose as a green chemical agent for natural fibres modification. We modified nanocellulose by using curing agent of epoxy---diethylenetriamine (DETA). This modification could increase the dispersity of nanocellulose in epoxy and reinforce epoxy. Compared with epoxy, the modulus, tensile stress and tensile strain of the modified nanocellulose/epoxy nanocomposite increased 1.42 %, 15.44 % and 27.47 %, respectively.
194

The stability of development tunnels sited adjacent to previous excavations

Sharpe, Leigh January 1999 (has links)
No description available.
195

Dune behavior in a multidirectional wind regime : White Sands Dune Field, New Mexico

Pederson, Anine Oehlenschlaeger 27 October 2014 (has links)
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, dune behavior at White Sands was documented from a time series of five lidar-derived digital elevation models (DEM) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 - June 2010, 244 sand-transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of migration to the NE, but with along-crest migration of dune sinuosity to the SE. Permutations of the DEMs allow matching specific dune behavior with wind modes. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along-crest migration of dune sinuosity and low stoss bedforms, as well as SE migration of NE-trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. Dune deformation occurs because of unequal deposition along the lee face as a function of the incidence angle formed between the wind and the local brinkline orientation. Incidence-angle control on dune deformation and types of lee-face surface processes allows for an idealized model for White Sands dunes. The dunes behave as complex systems in which each wind event deforms the dune shape, this new shape then serves as the configuration for the next wind event. / text
196

Holographic interferometric analysis of femoral prostheses

Blatcher, Stephen January 1996 (has links)
No description available.
197

Investigation into mechanics of yarn subject to high levels of axial torsion

Belov, Eugene B. January 1999 (has links)
No description available.
198

The generation of worn surfaces in sliding contacts with hard asperities

Xie, Yongsong January 1994 (has links)
No description available.
199

Comparative study of the generation and the measurement of strains in bituminous mixtures

Obert, Susannne January 2000 (has links)
No description available.
200

Nucleation of magma-driven fractures in the asthenospheric mantle

Banks, Joanna Mary January 1996 (has links)
No description available.

Page generated in 0.0714 seconds