• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 940
  • 232
  • 198
  • 155
  • 148
  • 104
  • 39
  • 36
  • 20
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • Tagged with
  • 2325
  • 250
  • 230
  • 211
  • 206
  • 177
  • 177
  • 163
  • 158
  • 154
  • 139
  • 135
  • 132
  • 130
  • 126
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
221

An Error Analysis Model for Adaptive Deformation Simulation

Kocak, Umut, Lundin Palmerius, Karljohan, Cooper, Matthew January 2012 (has links)
With the widespread use of deformation simulations in medical applications, the realism of the force feedback has become an important issue. In order to reach real-time performance with sufficient realism the approach of adaptivity, solution of different parts of the system with different resolutions and refresh rates, has been commonly deployed. The change in accuracy resulting from the use of adaptivity, however, has been been paid scant attention in the deformation simulation field. Presentation of error metrics is rare, while more focus is given to the real-time stability. We propose an abstract pipeline to perform error analysis for different types of deformation techniques which can consider different simulation parameters. A case study is also performed using the pipeline, and the various uses of the error estimation are discussed.
222

High Temperature Deformation Behaviour of an Al-Mg-Si-Cu Alloy and Its Relation to the Microstructural Characteristics

Carrick, Roger Nicol January 2009 (has links)
The microstructural evolution and mechanical properties at elevated temperatures of a recently fabricated fine-grained AA6xxx aluminium sheet were evaluated and compared to the commercially fabricated sheet of the same alloy in the T4P condition. The behaviour of the fine-grained and T4P sheets was compared at elevated temperatures between 350°C and 550°C, as well as room temperature. Static exposure to elevated temperatures revealed that the precipitate structure of the fine-grained material did not change extensively. The T4P material, however, underwent extensive growth of precipitates, including a large amount of grain boundary precipitation. At room temperature, the T4P material deformed at much higher stresses than the FG material, but achieved lower elongations. Deformation at elevated temperatures revealed that the fine-grained material achieved significantly larger elongations to failure than the T4P material in the temperature range of 350°C-450°C. Both materials behaved similarly at 500°C and 550°C. Above 500°C, the grain size was greatly reduced in the T4P material, and only a slightly increased in the fine-grained material. At temperatures above 450°C, the elongation to failure in both materials generally increased with increasing strain-rate. The poor performance of the T4P material at low temperatures was attributed to the precipitate characteristics of the sheet, which lead to elevated stresses and increased cavitation. The deformation mechanism of both materials was found to be controlled by dislocation climb, accommodated by the self diffusion of aluminium at 500°C and 550°C. The deformation mechanism in the fine-grained material transitioned to power law breakdown at lower temperatures. At 350°C to 450°C, the T4P material behaved similarly to a particle hardened material with an internal stress created by the precipitates. The reduction in grain size of the T4P material after deformation at 500°C and 550°C was suggested to be caused by dynamic recovery/recrystallization. The role of a finer grain-size in the deformation behaviour at elevated temperatures was mainly related to enhanced diffusion through grain boundaries. The differences in the behaviour of the two materials were mainly attributed to the difference in the precipitation characteristics of the materials.
223

Numerical Modelling of the Effects of High Strain Rate, Strain Path and Particles on the Formability of FCC Polycrystals

Rossiter, Jonathan January 2009 (has links)
A new crystal plasticity scheme for explicit time integration codes is developed based on a forward Euler algorithm in the first part of this paper. The new numerical model is incorporated in the UMAT subroutine for implementing rate dependent crystal plasticity model in LS-DYNA/Explicit. The material is modeled as a Face centered cubic (FCC) polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is developed to simulate large strain behaviour. Accordingly, an element or a number of elements of the finite element mesh is considered to represent a single crystal within the polycrystal aggregate and the constitutive response at a material point is given by the single crystal constitutive model. The second part of this thesis presents two applications of the crystal plasticity scheme used in conjunction with numerical modeling of three-dimensional (3D) real microstructures. First, finite element meshes containing both particle and texture data are created with solid elements. Particle size, location and orientation are represented by 3D ellipsoids and the elements within these ellipsoids are given rigid properties. Simulations of in-plane plane strain with different combinations of texture and particle location are performed. The effect on texture development, strain magnitudes, and strain localizations is investigated. Second, the three dimensional (3D) polycrystalline microstructure of the aluminum alloy AA5754 is modeled and subjected to three different strain rates for each strain path. The effect of strain paths, strain rates and thermal softening on the formation of localized deformation is investigated. Simulations show that strain path is the most dominant factor in localized deformation and texture evolution.
224

Influence of composition, grain size and manufacture process on the anisotropy of tube materials

Gullberg, Daniel January 2010 (has links)
A problem with cold pilgered tubes for OCTG applications is that they can get anisotropic properties with regard to yield strength. One source of anisotropy is texture that is developed during the cold deformation. EBSD measurements have been made on several austenitic stainless steels with different deformations to see what influence the composition has on the texture formation. The same measurements were used to study the influence of grain size on texture formation. The conclusion was that the composition can have an impact on the texture and hence has potential to also affect the anisotropy. The differences in texture cannot be associated with a specific alloying element, but is rather a synergetic effect. It was also concluded that grain structure has no strong influence on texture formation. An evaluation of three different tool designs used for cold pilgering was made. The designs evaluated are referred to as design A, B and C. EBSD measurements showed large deviations in texture in the middle of the wall compared to close to the surface of pilgered OCTG. However, the measurements showed no large differences between the three designs and the texture could not be coupled to the anisotropy.
225

High Temperature Deformation Behaviour of an Al-Mg-Si-Cu Alloy and Its Relation to the Microstructural Characteristics

Carrick, Roger Nicol January 2009 (has links)
The microstructural evolution and mechanical properties at elevated temperatures of a recently fabricated fine-grained AA6xxx aluminium sheet were evaluated and compared to the commercially fabricated sheet of the same alloy in the T4P condition. The behaviour of the fine-grained and T4P sheets was compared at elevated temperatures between 350°C and 550°C, as well as room temperature. Static exposure to elevated temperatures revealed that the precipitate structure of the fine-grained material did not change extensively. The T4P material, however, underwent extensive growth of precipitates, including a large amount of grain boundary precipitation. At room temperature, the T4P material deformed at much higher stresses than the FG material, but achieved lower elongations. Deformation at elevated temperatures revealed that the fine-grained material achieved significantly larger elongations to failure than the T4P material in the temperature range of 350°C-450°C. Both materials behaved similarly at 500°C and 550°C. Above 500°C, the grain size was greatly reduced in the T4P material, and only a slightly increased in the fine-grained material. At temperatures above 450°C, the elongation to failure in both materials generally increased with increasing strain-rate. The poor performance of the T4P material at low temperatures was attributed to the precipitate characteristics of the sheet, which lead to elevated stresses and increased cavitation. The deformation mechanism of both materials was found to be controlled by dislocation climb, accommodated by the self diffusion of aluminium at 500°C and 550°C. The deformation mechanism in the fine-grained material transitioned to power law breakdown at lower temperatures. At 350°C to 450°C, the T4P material behaved similarly to a particle hardened material with an internal stress created by the precipitates. The reduction in grain size of the T4P material after deformation at 500°C and 550°C was suggested to be caused by dynamic recovery/recrystallization. The role of a finer grain-size in the deformation behaviour at elevated temperatures was mainly related to enhanced diffusion through grain boundaries. The differences in the behaviour of the two materials were mainly attributed to the difference in the precipitation characteristics of the materials.
226

Numerical Modelling of the Effects of High Strain Rate, Strain Path and Particles on the Formability of FCC Polycrystals

Rossiter, Jonathan January 2009 (has links)
A new crystal plasticity scheme for explicit time integration codes is developed based on a forward Euler algorithm in the first part of this paper. The new numerical model is incorporated in the UMAT subroutine for implementing rate dependent crystal plasticity model in LS-DYNA/Explicit. The material is modeled as a Face centered cubic (FCC) polycrystalline aggregate, and a finite element analysis based on rate-dependent crystal plasticity is developed to simulate large strain behaviour. Accordingly, an element or a number of elements of the finite element mesh is considered to represent a single crystal within the polycrystal aggregate and the constitutive response at a material point is given by the single crystal constitutive model. The second part of this thesis presents two applications of the crystal plasticity scheme used in conjunction with numerical modeling of three-dimensional (3D) real microstructures. First, finite element meshes containing both particle and texture data are created with solid elements. Particle size, location and orientation are represented by 3D ellipsoids and the elements within these ellipsoids are given rigid properties. Simulations of in-plane plane strain with different combinations of texture and particle location are performed. The effect on texture development, strain magnitudes, and strain localizations is investigated. Second, the three dimensional (3D) polycrystalline microstructure of the aluminum alloy AA5754 is modeled and subjected to three different strain rates for each strain path. The effect of strain paths, strain rates and thermal softening on the formation of localized deformation is investigated. Simulations show that strain path is the most dominant factor in localized deformation and texture evolution.
227

Holes in Glulam Beams - Possible Methods of Reinforcement

Uthman, Rawa, Othman, Rawaz January 2009 (has links)
This thesis deals with glued laminated beams with holes. Different hole geometries, circular and quadratic,  and reinforcement methods were investigated. A total of 24 tests were performed using two types of reinforcements (glass fiber and plywood) and testing unreinforced beam. During testing of the beams without reinforcement a contact free deformation measurement system was used to capture the deformation pattern. A commercial finite element software package was used to perform numerical calculations of the response of the beams. The FE-analyses were also compared with the experimental results. The test results showed that the reinforcement with plywood was more efficient than the reinforcement with glass fiber. In addition, the two hole geometries showed different failure behaviors. The beams with quadratic holes showed a less brittle behavior, although at a lower load level than the beams with circular holes. / Denna rapport behandlar limträbalkar med hål. Olika hålgeometrier, cirkulära och kvadratiska hål, och olika metoder att förstärka balkarna vid hålet undersöktes. Totalt 24 enskilda provningar genomfördes med två olika förstärkningsmetoder (glasfiber och plywood) samt med balkar utan förstärkning. Vid provning av de oförstärkta balkarna användes ett system för beröringsfri deformationsmätning för att få en bild av deformationsmönstret. Ett kommersiellt finita elementprogram användes också för att analysera balkarnas respons och för att jämföra med provningsresultaten. Provningarna visade att förstärkningen med plywood var effektivare än förstärkningen med glasfiber. Vidare uppvisade de olika hålgeometrierna olika brottbeteenden, där de kvadratiska hålen gav mindre spröda brott, dock vid en i genomsnitt lägre brottlast än de cirkulära hålen.
228

Physics Based Reliability Assessment of Embedded Passives

Damani, Manoj Kumar 14 July 2004 (has links)
Multilayer embedded passives (resistors, inductors, and capacitors) on a printed wiring board can help to meet high performance requirements at a low cost and at a smaller size. Such an integration of embedded passives has new challenges with respect to design, materials, manufacturing, thermal management and reliability. As the area of integral passives on printed circuit boards is relatively new, there is inadequate literature on the thermo-mechanical reliability of integral passives. Therefore, there is a compelling need to understand the thermo-mechanical reliability of integral passives through the development of physics-based models as well as through experiments, and this thesis aims to develop such an experimental and theoretical program to study the thermo-mechanical reliability of integral passives.. As integral passives are often composite layers with dissimilar material properties compared to the other layers in the integral substrate, it is essential to ensure that RLC characteristics of the embedded passives do not deteriorate with thermal cycling due to thermo-mechanical deformations. This thesis aims to study the changes in the passive characteristics due to the thermally-induced deformations. Embedded capacitors and inductors have been looked at specifically in this research. Multi-field physics-based models have been constructed to determine the change in electrical parameters after thermal cycling. The thermo-mechanical models assume direction-dependent material properties for the board substrate and interconnect copper layers and temperature-dependent properties for interlayer dielectric and passive layers. Using the deformed geometry, the electrical characteristics have been determined at low frequency. In parallel to the models, test vehicle substrates have been subjected to 1000 thermal cycles between -55??o 125??nd high humidity and temperature conditions at 85??5RH for 500 hours, and it has been observed that there are significant changes in the electrical parameters. The results obtained from the physics-based simulations have been validated against the measured electrical characteristics from the fabricated functional test boards that have been thermal cycled.
229

An investigation of the effect of fiber structural properties on the compression response of fibrous beds

Jones, Robert Lewis 01 January 1962 (has links)
No description available.
230

Room temperature deformation of (001) SrTiO3 single crystal

Yang, Kai-hsun 14 August 2012 (has links)
Recent interests on the plastic deformation of strontium titanate (SrTiO3) are derived from its unusual ductile-to-brittle-to-ductile transition (DBDT). The transition is divided into three regimes (A, B and C) corresponding to the temperature range of 113 K to 1053 K (-160oC to 780oC), 1053 K to ~ 1503 K (780oC to ~ 1230oC) and ~ 1503 K to 1873 K (~ 1230oC to 1600oC), discovered by Sigle and colleagues in the MPI-Stuttgart. We report the dislocation substructures in (001) single crystal SrTiO3 deformed by Vickers indentation at room temperature, studied by scanning and transmission electron microscopy (SEM and TEM). Dislocation dipoles of screw and edge character are observed and confirmed by inside-outside contrast using g-vector by weak-beam dark field imaging. They are formed by edge trapping, jog dragging and cross slip-pinching off. Similar to dipole breaking off in deformed sapphire (£\-Al2O3) at 1200oC and £^-TiAl intermetallic at room temperature, the dipoles pinch off at one end, and emit a string of loops at trail. Two sets of slip systems {110}<-11 0> and {100}<011> are activated under both 100 g and 1 kg load. The suggestion is that plastic deformation has reached the stage II work hardening, which is characterized by multiplication of dislocations through cross slip, interactions between dislocations, and operating of multiple slip systems. In nanoindentation experiments, it is generally believed that the shear stress at the onset of plasticity can approach the theoretical shear strength of an ideal. Here we report direct evidence that plasticity in a single crystal SrTiO3 can begin at very small forces, remarkably. However, the shear stresses associated with these very small forces is excess the theoretical shear strength of SrTiO3 (16.1 GPa). Our observations entail correlating quantitative load¡Vdisplacement measurements with individual stage microstructure during nanoindentation experiments in a transmission electron microscope. We also report direct evidence that with the prevalent notion that the first obvious displacement excursion in a nanoindentation test is indicative of the onset of plastic deformation. The SrTiO3 deforms elastically before the pop-in depth, but exhibits a plastic-elastic behavior after that. TEM observations reveal that the slip band is the predominant deformation mechanism in SrTiO3 during indentation. The cracks usually initiate at the intersection of slip bands to produce the sessile dislocations with Burger vectors [1-10] (or [110]) along the (110) (or (1-10)) crack plane. In addition, theoretical analysis confirms that the pop-in event is associated with the onset plasticity of SrTiO3. The plastic deformation of (001) single crystal SrTiO3 is investigated using compression along [001] at room temperature. A total plastic strain of ~19+2% is consistently obtained. The stress-strain curve exhibiting four work-hardening stages are describable using the stage 0 of axis rotation, the stage I ¡§easy glide¡¨, the stage II multiple slip and the wall-and-cell structure, and the stage III work softening and dynamic recovery before sample fracture takes place. It is revealed by analyzing the microstructure for each work-hardening stage that the plastic deformation of single crystal SrTiO3 closely resembles that of metals. The primary slip systems of [011](0-11) and [01-1](011) predominate in stage I where plastic deformation occurs by the migration of kink pairs in collinear partial dislocations. The activation of multiple slips including [101](-101) and [10-1](101), and [011](0-11) and [0-11](011) in stage II produces the cell-and-wall structure which is also characteristic of plastically deformed metals. In stage III with decreasing work-hardening rate, the bow-out dislocation interaction from opposite walls results in annihilation. The reaction between dislocations from adjacent walls produces the resultant dislocations with b = [-110] parallel to the load axis [001]. These dislocations are sessile, which eventually leads to sample fracture. We have analyzed the microstructure of <001> SrTiO3 single crystal deformed using compression at room temperature using transmission electron microscopy. A representative stress-strain (£m-£`) curve is established, similar to that for metals it consists of three hardening stages before failure occurs at a strain £` = 19+2%. Dislocation analysis suggests that the primary slip systems in [011](0-11) and [0-11](011) are activated in the £m-£` curve stress plateau region usually addressed as easy glide. Three characteristic features are identified from samples deformed to stage I hardening by easy glide: (a) rectangular glide loops, (b) collinear partials, and (c) kink pairs. Dislocations have predominantly pure edge character. Kink pairs are observed only on the edge segments suggesting that screw dislocations have higher mobility. In easy glide, the migration and annihilation of kink pairs occurring on both the trailing and leading partials lends support to a previous report by Castillo-Rodriguez and Sigle (2011) that dislocation glide is controlled by the long-segment limit of a kink-pair model. Pure edge dislocations are dissociated into collinear partials with b = 1/2[011] (or 1/2[0-11]) by glide in (0-11) (or(011)), and kink pairs are formed on both leading and trailing partials. The suggestion is that in the low-stress regime hardening by dislocation pile-up in stage I is compensated for by kink pair nucleation and migration. The overall hardening rate thus remains unchanged at approximately zero, resembling easy glide in the deformation of metals, over an increasing strain of £` ? 4% before reaching stage II hardening. Microcrack nucleation and propagation behavior in the crack tip was investigated by using transmission electron microscopy (TEM) through compressive test and Vickers indenter. Observation results showed that fracture process was completed in this <001> SrTiO3 single crystal material by connecting dislocations. The crack were nucleated and developed in the dislocation free zone (DFZ) or super thinned area ahead of crack tip under local high stress concentration. The cracks were linked with each other by mutual dislocation emission which expedites the propagation of crack tips effectively. We suggested a dislocation based the Hirsch et al. model of plastic-zone evolution in which dislocations emitted from the crack tip glide away to form a crack-tip plastic zone. Each emitted dislocation reduces the crack tip stress intensity via elastic interactions (the ¡¥¡¥shielding¡¨ effect).

Page generated in 0.0703 seconds