1 |
Potencial da arborização viária na redução do consumo de energia elétrica: definição de três áreas na cidade de São Paulo - SP, aplicação de questionários, levantamento de fatores ambientais e estimativa de Graus-Hora de calor / Street forestry potential on the reduction of electric energy consumption: definition of tree areas in the city of SP, interviews, evaluation of environmental factors and heat degree hour estimationVelasco, Giuliana Del Nero 07 December 2007 (has links)
A problemática na obtenção e no uso consciente de energia nas cidades é assunto polêmico e extremamente atual. As áreas urbanas têm, freqüentemente, superfícies mais escuras e menos vegetação quando comparadas a áreas circunvizinhas. Essas diferenças afetam o clima, o uso de energia e a qualidade de vida. Uma das linhas de ação para promover o uso eficiente de energia elétrica nas cidades através da redução da necessidade de consumo é o uso de vegetação. O objetivo do presente trabalho foi o de investigar - em três áreas da cidade de São Paulo-SP - o potencial da arborização viária na redução do consumo de energia elétrica. Inicialmente, considerando todo o município de São Paulo, foi feita a definição das áreas a serem estudadas, com uso de ferramentas de geoprocessamento, uso de mapas já existentes do município e diversas visitas aos locais. A segunda parte consistiu na análise, em menor escala, de fatores relacionados às residências pertencentes às áreas definidas anteriormente, com medições de variáveis climáticas (temperatura do ar e umidade relativa) nos meses de setembro de 2006 e março de 2007, questionários, classificação da vegetação existente nas calçadas das residências e valores de consumo de energia elétrica. Finalmente, foi elaborada uma estimativa de Graus-Hora de calor relacionando-os com os dados coletados. O índice de vegetação associado à classificação supervisionada e às visitas ao local permitiu a definição das três áreas de estudo. A área 1 continha 3,72% de vegetação e uma média de 1,18 plantas/residência amostrada. Já a área 2, intermediária em termos de densidade de vegetação, continha 11,71% de vegetação e média de 3,17 plantas/residência. Por fim, a área 3, caracterizada como a de maior densidade de vegetação contava com 22,92% e 5,32 plantas/residência. Em setembro de 2006, a média de temperatura do ar, nos quatro dias, nos quatro horários (7:00h, 9:00h, 14:00 e 21:00h) e nos dois locais (calçada e rua) foi de 21,61oC, 21,46oC e 21,25oC para as áreas 1, 2 e 3, respectivamente. Já para março de 2007 tais valores foram de 26,69oC, 25,79oC e 25,46oC. A maior diferença encontrada de temperatura entre as áreas 1 e 3 foi de 2,14oC. A quantidade e uso de aparelhos de ar condicionado não diferiu entre áreas, ao contrário do consumo de energia elétrica, fato este que impossibilitou a análise e definição da influência de tais aparelhos no valor final de consumo por residência. A quantidade de aparelhos de ar condicionado foi positivamente relacionada com o consumo. A estimativa de Graus-Hora de calor foi possível a partir da estação de referência, resultando, para o mês de março, valores de 10, 6,67, 3,91 e 7,2 para as áreas 1, 2, 3 e referência, respectivamente. Para o mês de setembro, estes valores foram de 2,21, 0,76, 0 e 0, para as mesmas áreas. / The problematic to obtain and use energy in a conscious way in cities is a polemic issue nowadays. Frequently, urban areas have darker surfaces areas with less vegetation than neighbor areas. These differences affect the climate, the energy use and the quality of life. One of the action lines to promote an efficient use of electric energy in cities, through the reduction of the necessity of consumption, is the use of vegetation. The objective of this research is to investigate - in three areas of the city of Sao Paulo - SP - the potential of street forestry in reducing the consumption of electric energy. Initially, considering the whole city of Sao Paulo, the definition of the areas to be studied was made through the use of geoprocessing, city maps that already existed and through several visits done to the chosen places. The second part consisted in the analyse, in a smaller scale, of the characteristics of the residences that belonged to the previous established areas with the evaluation of climatic variables (air temperature and relative humidity) during the months of September of 2006 and March of 2007, through questionnaires, classification of the vegetation present in the sidewalks of those residences and electric energy consumption values. Finally the estimation of heat Degree - Hours was made and related to the data collected. The association of the vegetation index to the supervised classification and to the visits done to those locals permitted the definition of three areas of study. Area 1 had 3,72% of the vegetation and an average of 1,18 plants/residence sampled. Area 2, intermediate when it comes to vegetation density, had 11,71% of vegetation and average of 3,17 plants/residence. At least, area 3 characterized as the one with higher vegetation density had 22,92% of vegetation and 5,32 plants/residence. In September of 2006 the average air temperature, in four days and four day times (7:00h, 9:00h, 14:00 e 21:00h) and in both places (sidewalk and street) was 21,61°C, 21,46°C and 21,25°C for areas 1, 2 and 3, respectively. In March of 2007 those values were 26,69°C, 25,79°C and 25,46°C. The biggest temperature difference found was between areas 1 and 3 and it was 2,14°C. The quantity and use of air conditioning systems did not differ between areas, occurring the opposite with the electric energy consumption. Because of that, the analyse and the definition of the influence of the air conditioning system in the final value of energy consumption per residence. Quantities of air conditioning systems were significant and positively correlated to the energy consumption. The estimation of heat Degree-Hours was possible due to the standard station resulting, for March 2007, in values as 10, 6,67, 3,91, e 7,2 for areas 1, 2 , 3 and standard, respectively. For September 2006 these values were 2,21, 0,76, 0 e 0, for the same areas.
|
2 |
Potencial da arborização viária na redução do consumo de energia elétrica: definição de três áreas na cidade de São Paulo - SP, aplicação de questionários, levantamento de fatores ambientais e estimativa de Graus-Hora de calor / Street forestry potential on the reduction of electric energy consumption: definition of tree areas in the city of SP, interviews, evaluation of environmental factors and heat degree hour estimationGiuliana Del Nero Velasco 07 December 2007 (has links)
A problemática na obtenção e no uso consciente de energia nas cidades é assunto polêmico e extremamente atual. As áreas urbanas têm, freqüentemente, superfícies mais escuras e menos vegetação quando comparadas a áreas circunvizinhas. Essas diferenças afetam o clima, o uso de energia e a qualidade de vida. Uma das linhas de ação para promover o uso eficiente de energia elétrica nas cidades através da redução da necessidade de consumo é o uso de vegetação. O objetivo do presente trabalho foi o de investigar - em três áreas da cidade de São Paulo-SP - o potencial da arborização viária na redução do consumo de energia elétrica. Inicialmente, considerando todo o município de São Paulo, foi feita a definição das áreas a serem estudadas, com uso de ferramentas de geoprocessamento, uso de mapas já existentes do município e diversas visitas aos locais. A segunda parte consistiu na análise, em menor escala, de fatores relacionados às residências pertencentes às áreas definidas anteriormente, com medições de variáveis climáticas (temperatura do ar e umidade relativa) nos meses de setembro de 2006 e março de 2007, questionários, classificação da vegetação existente nas calçadas das residências e valores de consumo de energia elétrica. Finalmente, foi elaborada uma estimativa de Graus-Hora de calor relacionando-os com os dados coletados. O índice de vegetação associado à classificação supervisionada e às visitas ao local permitiu a definição das três áreas de estudo. A área 1 continha 3,72% de vegetação e uma média de 1,18 plantas/residência amostrada. Já a área 2, intermediária em termos de densidade de vegetação, continha 11,71% de vegetação e média de 3,17 plantas/residência. Por fim, a área 3, caracterizada como a de maior densidade de vegetação contava com 22,92% e 5,32 plantas/residência. Em setembro de 2006, a média de temperatura do ar, nos quatro dias, nos quatro horários (7:00h, 9:00h, 14:00 e 21:00h) e nos dois locais (calçada e rua) foi de 21,61oC, 21,46oC e 21,25oC para as áreas 1, 2 e 3, respectivamente. Já para março de 2007 tais valores foram de 26,69oC, 25,79oC e 25,46oC. A maior diferença encontrada de temperatura entre as áreas 1 e 3 foi de 2,14oC. A quantidade e uso de aparelhos de ar condicionado não diferiu entre áreas, ao contrário do consumo de energia elétrica, fato este que impossibilitou a análise e definição da influência de tais aparelhos no valor final de consumo por residência. A quantidade de aparelhos de ar condicionado foi positivamente relacionada com o consumo. A estimativa de Graus-Hora de calor foi possível a partir da estação de referência, resultando, para o mês de março, valores de 10, 6,67, 3,91 e 7,2 para as áreas 1, 2, 3 e referência, respectivamente. Para o mês de setembro, estes valores foram de 2,21, 0,76, 0 e 0, para as mesmas áreas. / The problematic to obtain and use energy in a conscious way in cities is a polemic issue nowadays. Frequently, urban areas have darker surfaces areas with less vegetation than neighbor areas. These differences affect the climate, the energy use and the quality of life. One of the action lines to promote an efficient use of electric energy in cities, through the reduction of the necessity of consumption, is the use of vegetation. The objective of this research is to investigate - in three areas of the city of Sao Paulo - SP - the potential of street forestry in reducing the consumption of electric energy. Initially, considering the whole city of Sao Paulo, the definition of the areas to be studied was made through the use of geoprocessing, city maps that already existed and through several visits done to the chosen places. The second part consisted in the analyse, in a smaller scale, of the characteristics of the residences that belonged to the previous established areas with the evaluation of climatic variables (air temperature and relative humidity) during the months of September of 2006 and March of 2007, through questionnaires, classification of the vegetation present in the sidewalks of those residences and electric energy consumption values. Finally the estimation of heat Degree - Hours was made and related to the data collected. The association of the vegetation index to the supervised classification and to the visits done to those locals permitted the definition of three areas of study. Area 1 had 3,72% of the vegetation and an average of 1,18 plants/residence sampled. Area 2, intermediate when it comes to vegetation density, had 11,71% of vegetation and average of 3,17 plants/residence. At least, area 3 characterized as the one with higher vegetation density had 22,92% of vegetation and 5,32 plants/residence. In September of 2006 the average air temperature, in four days and four day times (7:00h, 9:00h, 14:00 e 21:00h) and in both places (sidewalk and street) was 21,61°C, 21,46°C and 21,25°C for areas 1, 2 and 3, respectively. In March of 2007 those values were 26,69°C, 25,79°C and 25,46°C. The biggest temperature difference found was between areas 1 and 3 and it was 2,14°C. The quantity and use of air conditioning systems did not differ between areas, occurring the opposite with the electric energy consumption. Because of that, the analyse and the definition of the influence of the air conditioning system in the final value of energy consumption per residence. Quantities of air conditioning systems were significant and positively correlated to the energy consumption. The estimation of heat Degree-Hours was possible due to the standard station resulting, for March 2007, in values as 10, 6,67, 3,91, e 7,2 for areas 1, 2 , 3 and standard, respectively. For September 2006 these values were 2,21, 0,76, 0 e 0, for the same areas.
|
3 |
Decomposing Residential Monthly Electric Utility Bill Into HVAC Energy Use Using Machine LearningYakkali, Sai Santosh 02 August 2019 (has links)
No description available.
|
4 |
Creation of hot summer years and evaluation of overheating risk at a high spatial resolution under a changing climateLiu, Chunde January 2017 (has links)
It is believed that the extremely hot European summer in 2003, where tens of thousands died in buildings, will become the norm by the 2040s, and hence there is the urgent need to accurately assess the risk that buildings pose. Thermal simulations based on warmer than typical years will be key to this. Unfortunately, the existing warmer than typical years, such as probabilistic Design Summer Years (pDSYs) are not robust measures due to their simple selection method, and can even be cooler than typical years. This study developed two new summer reference years: one (pHSY-1) is suitable for assessing the occurrence and severity of overheating while the other (pHSY-2) is appropriate for evaluating the thermal stress. Both have been proven to be more robust than the pDSYs. In addition, this study investigated the spatial variation in overheating driven by variability in building characteristics and the local environment. This variation had been ignored by previous studies, as most of them either created thermal models using building archetypes with little or no concern about the influence of local shading, or assumed little variation in climate across a landscape. For the first time, approximately a thousand more accurate thermal models were created for a UK city based on the remote measurement including building characteristics and their local shading. By producing overheating and mortality maps this study found that spatial variation in the risk of overheating was considerably higher due to the variability of vernacular forms, contexts and climates than previously thought, and that the heat-related mortality will be tripled by the 2050s if no building and human thermal adaptations are taken. Such maps would be useful to Governments when making cost-effective adaptation strategies against a warming climate.
|
5 |
Effects of Short-term Chilling Stress on Seedling Quality and Post-transplanting Growth of Grafted and Nongrafted WatermelonErtle, John Michael January 2020 (has links)
No description available.
|
6 |
Beräkning av värmeenergiförluster i flerbostadshus genom analys av den totala fjärrvärmeenergianvändningen : / Calculation of the thermal energy losses in apartment buildings through analyze of the total district thermal energy consumption :Fredhav, Dennis, Briggert Sjöstrand, Carl Andreas January 2012 (has links)
This thesis has been carried out on behalf of IV Produkt AB and intends to set an average ratio of thermal energy losses in apartment buildings that were built during the 1960-1990. This shall be derived by analyzing the total district energy consumption that has been divided into three parts: heat energy losses (the actual heating requirements), the heating of domestic hot water and heating energy consumption for the controlled ventilation. Three different residential areas that were built during the years 1962-1966 and one that was built in 1993 has been analyzed. All residential areas are located in Växjö urban and contains between four and six apartment buildings. The analyzed objects have a mechanical exhaust ventilation systems and district heating as the heating method. No own laboratory work or experiments have been done in this thesis, the calculations have been done on the basis of parameters from VEAB, interviews with property managers, and literature studies. By calculations, we have got a result that is reported in Chapter 6. The result is given as a thermal energy loss as a percentage of the total heat consumption. In this thesis there has also been a review of the rules on requirements for the specific energy consumptions in buildings, indoor environment and indoor temperature from the National Board of Housing and the National Board of Health and Welfare.
|
7 |
Sommerlicher Wärmeschutz im Zeichen des Klimawandels – Anpassungsplanung für Bürogebäude / Protection against summer overheating in the context of climate change – Adaptation planning for office buildingsFahrion, Marc-Steffen 26 January 2016 (has links) (PDF)
Seit Beginn der Industrialisierung ist ein starker Anstieg der anthropogenen Treibhausgaskonzentrationen in der Atmosphäre zu verzeichnen, der zu einer Veränderung des Klimas auf der Erde führt. Schon heute sind die Auswirkungen auf die Umwelt und zahlreiche Bereiche des täglichen Lebens zu beobachten. Diese werden sich mit fortschreitendem Klimawandel noch verstärken. Auch das Bauwesen muss sich auf die sich verändernden klimatischen Einwirkungen wie beispielsweise Sommerhitze, Überflutung, Starkregen, Hagel und Wind einstellen. Für keine der genannten klimatischen Einwirkungen ist das Änderungssignal in den Klimaprojektionen so eindeutig wie für die Sommerhitze. Aus diesem Grund wird der Handlungsbedarf beim sommerlichen Wärmeschutz als besonders hoch eingeschätzt.
In den westlichen Industriestaaten halten sich Erwachsene während des Sommers circa 80 % der Zeit in Innenräumen auf. Deshalb ist das Innenraumklima von entscheidender Bedeutung für die Behaglichkeit, die geistige Leistungsfähigkeit und die Gesundheit des Menschen. Wie sich der Klimawandel auf die gebaute Umwelt in Deutschland auswirkt, ist weitestgehend unerforscht. Es ist zu klären, ob nur einzelne baukonstruktive Details, die heutigen Bemessungsregeln oder sogar grundsätzliche Entwurfsprinzipien für Gebäude überdacht werden müssen.
Das Ziel der Arbeit ist, eine Untersuchungsmethodik zu entwickeln, mit der die Auswirkungen des bereits beobachteten und des zu erwartenden Klimawandels auf den sommerlichen Wärmeschutz bestehender Bürogebäude beurteilt werden können. Erst dadurch lässt sich ein etwaiger Handlungsbedarf objektiv feststellen und begründen. Ein weiteres wesentliches Ziel besteht darin, beispielhafte Anpassungsmaßnahmen in Abhängigkeit der jeweiligen Baukonstruktion zu entwickeln, mit denen auch in Zukunft die sommerliche Behaglichkeit in bestehenden Bürogebäuden sichergestellt werden kann. Von besonderem Interesse ist dabei die Frage, ob baukonstruktive Maßnahmen allein in Zukunft ausreichen können oder ob zusätzlich anlagentechnische Lösungen zur technischen Kühlung unumgänglich werden. Die entwickelten Anpassungsmaßnahmen sollen die Grundlage für Gebäudekonzepte und Fassadenkonstruktionen sein, welche auch bei fortschreitendem Klimawandel die Anforderungen an die Behaglichkeit und den sommerlichen Wärmeschutz erfüllen. Des Weiteren soll eine Methode zur Bewertung der Wirtschaftlichkeit von Klimaanpassungsmaßnahmen aufgezeigt werden.
Um untersuchen zu können, inwieweit die Verletzbarkeit infolge zunehmender Sommerhitze und der entsprechende Anpassungsbedarf von der Baukonstruktion abhängen, wurden drei Bürogebäude unterschiedlicher Baualtersstufen ausgewählt und mittels dynamisch-thermischer Gebäudesimulation analysiert. Die dynamisch-thermische Gebäudesimulation ist aktuell die detaillierteste Methode zur Beurteilung des sommerlichen Wärmeschutzes. Nur mit ihr können komplexe Gebäudekonzepte oder automatisierte Systeme ausreichend genau nachgebildet werden.
Zur Abbildung des bereits stattgefundenen und des projizierten Klimawandels wurden fünf Klimadatensätze verwendet, mit denen der Klimawandel von der Mitte des 20. Jahrhunderts bis zum Ende des 21. Jahrhunderts dargestellt werden kann. Die Schwachpunkte der drei untersuchten Gebäude wurden analysiert und darauf aufbauend detaillierte Anpassungsvorschläge ausgearbeitet und wiederum über Simulationen bewertet. Umfangreiche Detailzeichnungen zu den angepassten Gebäudekonzepten und Fassadenkonstruktionen sollen eine Umsetzung der Ergebnisse in die Praxis erleichtern. Es werden Möglichkeiten aufgezeigt, den durch diese Maßnahmen erzielten Nutzen in Geldeinheiten zu bewerten. Dadurch können Klimaanpassungsmaßnahmen einer Wirtschaftlichkeitsbetrachtung über Investitionsrechenverfahren zugeführt werden. / Since the beginning of industrialization, a large increase of anthropogenic greenhouse gas concentrations in the atmosphere has been detected. This increase is the main cause for the observed climate change. The impacts of climate change on the environment and numerous aspects of human lives have been visible and will become more and more threatening with ongoing climate change. Civil engineering has to deal with changing climate-related hazards such as summer heat, flooding, torrential rain, hail and storm. For none of the mentioned climatic impacts on buildings, the climate change signal is as unambiguous and robust as for summer heat. Thus, actions to protect from summer overheating are highly required.
During summer, adults in the Western industrialized states spend about 80 % of their time indoors. Therefore, indoor climate is of essential importance for comfort, mental performance and human health. The impacts of climate change on the built environment in Germany are rarely investigated. It has to be determined whether the building construction details, current design regulations or the design principles have to be revised.
This thesis aims to develop a research methodology, which evaluates the impacts of the observed and expected climate change on the protection against summer overheating of existing office buildings. Only thus a possible need for action can be objectively determined and justified. Another major objective is the development of exemplary adaptation measures for various building construction types to ensure the comfort in existing office buildings during summer. Of particular interest is the question if it will be sufficient in the future to use only passive measures or if it will be unavoidable to install technical cooling capacities. The developed adaptation measures should be the basis for building concepts and façade constructions that are able to guarantee high comfort and an improved protection against summer overheating. Furthermore, a method to evaluate the economic efficiency of adaptation measures is demonstrated.
To investigate the relationship between building construction and vulnerability, three buildings of different construction year categories have been analyzed using dynamic thermal building simulations. At present, the dynamic thermal building simulation is the most detailed method for evaluating the protection against summer overheating. This is the only method which is able to reproduce complex building concepts and automated systems in sufficient detail.
In order to demonstrate the impacts of the observed and projected climate change on buildings between the middle of the 20th century and the end of the 21st century, five climate datasets have been applied. The weak points of the three investigated buildings have been analyzed. Based on this, detailed adaptation measures have been developed and evaluated by thermal building simulations. Comprehensive drawings, which show the adapted building concepts and façade details, will facilitate the application in practice. Different possibilities are demonstrated to express the achieved benefit from the adaptation measures in monetary units. Therefore, adaptation measures can be assessed by investment calculations.
|
8 |
Sommerlicher Wärmeschutz im Zeichen des Klimawandels – Anpassungsplanung für BürogebäudeFahrion, Marc-Steffen 08 December 2015 (has links)
Seit Beginn der Industrialisierung ist ein starker Anstieg der anthropogenen Treibhausgaskonzentrationen in der Atmosphäre zu verzeichnen, der zu einer Veränderung des Klimas auf der Erde führt. Schon heute sind die Auswirkungen auf die Umwelt und zahlreiche Bereiche des täglichen Lebens zu beobachten. Diese werden sich mit fortschreitendem Klimawandel noch verstärken. Auch das Bauwesen muss sich auf die sich verändernden klimatischen Einwirkungen wie beispielsweise Sommerhitze, Überflutung, Starkregen, Hagel und Wind einstellen. Für keine der genannten klimatischen Einwirkungen ist das Änderungssignal in den Klimaprojektionen so eindeutig wie für die Sommerhitze. Aus diesem Grund wird der Handlungsbedarf beim sommerlichen Wärmeschutz als besonders hoch eingeschätzt.
In den westlichen Industriestaaten halten sich Erwachsene während des Sommers circa 80 % der Zeit in Innenräumen auf. Deshalb ist das Innenraumklima von entscheidender Bedeutung für die Behaglichkeit, die geistige Leistungsfähigkeit und die Gesundheit des Menschen. Wie sich der Klimawandel auf die gebaute Umwelt in Deutschland auswirkt, ist weitestgehend unerforscht. Es ist zu klären, ob nur einzelne baukonstruktive Details, die heutigen Bemessungsregeln oder sogar grundsätzliche Entwurfsprinzipien für Gebäude überdacht werden müssen.
Das Ziel der Arbeit ist, eine Untersuchungsmethodik zu entwickeln, mit der die Auswirkungen des bereits beobachteten und des zu erwartenden Klimawandels auf den sommerlichen Wärmeschutz bestehender Bürogebäude beurteilt werden können. Erst dadurch lässt sich ein etwaiger Handlungsbedarf objektiv feststellen und begründen. Ein weiteres wesentliches Ziel besteht darin, beispielhafte Anpassungsmaßnahmen in Abhängigkeit der jeweiligen Baukonstruktion zu entwickeln, mit denen auch in Zukunft die sommerliche Behaglichkeit in bestehenden Bürogebäuden sichergestellt werden kann. Von besonderem Interesse ist dabei die Frage, ob baukonstruktive Maßnahmen allein in Zukunft ausreichen können oder ob zusätzlich anlagentechnische Lösungen zur technischen Kühlung unumgänglich werden. Die entwickelten Anpassungsmaßnahmen sollen die Grundlage für Gebäudekonzepte und Fassadenkonstruktionen sein, welche auch bei fortschreitendem Klimawandel die Anforderungen an die Behaglichkeit und den sommerlichen Wärmeschutz erfüllen. Des Weiteren soll eine Methode zur Bewertung der Wirtschaftlichkeit von Klimaanpassungsmaßnahmen aufgezeigt werden.
Um untersuchen zu können, inwieweit die Verletzbarkeit infolge zunehmender Sommerhitze und der entsprechende Anpassungsbedarf von der Baukonstruktion abhängen, wurden drei Bürogebäude unterschiedlicher Baualtersstufen ausgewählt und mittels dynamisch-thermischer Gebäudesimulation analysiert. Die dynamisch-thermische Gebäudesimulation ist aktuell die detaillierteste Methode zur Beurteilung des sommerlichen Wärmeschutzes. Nur mit ihr können komplexe Gebäudekonzepte oder automatisierte Systeme ausreichend genau nachgebildet werden.
Zur Abbildung des bereits stattgefundenen und des projizierten Klimawandels wurden fünf Klimadatensätze verwendet, mit denen der Klimawandel von der Mitte des 20. Jahrhunderts bis zum Ende des 21. Jahrhunderts dargestellt werden kann. Die Schwachpunkte der drei untersuchten Gebäude wurden analysiert und darauf aufbauend detaillierte Anpassungsvorschläge ausgearbeitet und wiederum über Simulationen bewertet. Umfangreiche Detailzeichnungen zu den angepassten Gebäudekonzepten und Fassadenkonstruktionen sollen eine Umsetzung der Ergebnisse in die Praxis erleichtern. Es werden Möglichkeiten aufgezeigt, den durch diese Maßnahmen erzielten Nutzen in Geldeinheiten zu bewerten. Dadurch können Klimaanpassungsmaßnahmen einer Wirtschaftlichkeitsbetrachtung über Investitionsrechenverfahren zugeführt werden. / Since the beginning of industrialization, a large increase of anthropogenic greenhouse gas concentrations in the atmosphere has been detected. This increase is the main cause for the observed climate change. The impacts of climate change on the environment and numerous aspects of human lives have been visible and will become more and more threatening with ongoing climate change. Civil engineering has to deal with changing climate-related hazards such as summer heat, flooding, torrential rain, hail and storm. For none of the mentioned climatic impacts on buildings, the climate change signal is as unambiguous and robust as for summer heat. Thus, actions to protect from summer overheating are highly required.
During summer, adults in the Western industrialized states spend about 80 % of their time indoors. Therefore, indoor climate is of essential importance for comfort, mental performance and human health. The impacts of climate change on the built environment in Germany are rarely investigated. It has to be determined whether the building construction details, current design regulations or the design principles have to be revised.
This thesis aims to develop a research methodology, which evaluates the impacts of the observed and expected climate change on the protection against summer overheating of existing office buildings. Only thus a possible need for action can be objectively determined and justified. Another major objective is the development of exemplary adaptation measures for various building construction types to ensure the comfort in existing office buildings during summer. Of particular interest is the question if it will be sufficient in the future to use only passive measures or if it will be unavoidable to install technical cooling capacities. The developed adaptation measures should be the basis for building concepts and façade constructions that are able to guarantee high comfort and an improved protection against summer overheating. Furthermore, a method to evaluate the economic efficiency of adaptation measures is demonstrated.
To investigate the relationship between building construction and vulnerability, three buildings of different construction year categories have been analyzed using dynamic thermal building simulations. At present, the dynamic thermal building simulation is the most detailed method for evaluating the protection against summer overheating. This is the only method which is able to reproduce complex building concepts and automated systems in sufficient detail.
In order to demonstrate the impacts of the observed and projected climate change on buildings between the middle of the 20th century and the end of the 21st century, five climate datasets have been applied. The weak points of the three investigated buildings have been analyzed. Based on this, detailed adaptation measures have been developed and evaluated by thermal building simulations. Comprehensive drawings, which show the adapted building concepts and façade details, will facilitate the application in practice. Different possibilities are demonstrated to express the achieved benefit from the adaptation measures in monetary units. Therefore, adaptation measures can be assessed by investment calculations.
|
Page generated in 0.062 seconds