• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classical vs. Quantum Decoherence

Helm, Julius 12 March 2012 (has links) (PDF)
Based on the superposition principle, any two states of a quantum system may be coherently superposed to yield a novel state. Such a simple construction is at the heart of genuinely quantum phenomena such as interference of massive particles or quantum entanglement. Yet, these superpositions are susceptible to environmental influences, eventually leading to a complete disappearance of the system's quantum character. In principle, two distinct mechanisms responsible for this process of decoherence may be identified. In a classical decoherence setting, on the one hand, stochastic fluctuations of classical, ambient fields are the relevant source. This approach leads to a formulation in terms of stochastic Hamiltonians; the dynamics is unitary, yet stochastic. In a quantum decoherence scenario, on the other hand, the system is described in the language of open quantum systems. Here, the environmental degrees of freedom are to be treated quantum mechanically, too. The loss of coherence is then a direct consequence of growing correlations between system and environment. The purpose of the present thesis is to clarify the distinction between classical and quantum decoherence. It is known that there exist decoherence processes that are not reconcilable with the classical approach. We deem it desirable to have a simple, feasible model at hand of which it is known that it cannot be understood in terms of fluctuating fields. Indeed, we find such an example of true quantum decoherence. The calculation of the norm distance to the convex set of classical dynamics allows for a quantitative assessment of the results. In order to incorporate genuine irreversibility, we extend the original toy model by an additional bath. Here, the fragility of the true quantum nature of the dynamics under increasing coupling strength is evident. The geometric character of our findings offers remarkable insights into the geometry of the set of non-classical decoherence maps. We give a very intuitive geometrical measure---a volume---for the quantumness of dynamics. This enables us to identify the decoherence process of maximum quantumness, that is, having maximal distance to the convex set of dynamics consistent with the stochastic, classical approach. In addition, we observe a distinct correlation between the decoherence potential of a given dynamics and its achievable quantumness. In a last step, we study the notion of quantum decoherence in the context of a bipartite system which couples locally to the subsystems' respective environments. A simple argument shows that in the case of a separable environment the resulting dynamics is of classical nature. Based on a realistic experiment, we analyze the impact of entanglement between the local environments on the nature of the dynamics. Interestingly, despite the variety of entangled environmental states scrutinized, no single instance of true quantum decoherence is encountered. In part, the identification of the classical nature relies on numerical schemes. However, for a large class of dynamics, we are able to exclude analytically the true quantum nature.
2

Semiclassical hybrid dynamics for open quantum systems

Goletz, Christoph-Marian 20 July 2011 (has links) (PDF)
In this work the semiclassical hybrid dynamics is extended in order to be capable of treating open quantum systems considering finite baths. The corresponding phenomena, i.e. decoherence and dissipation, are investigated for various scenarios.
3

Classical vs. Quantum Decoherence

Helm, Julius 20 December 2011 (has links)
Based on the superposition principle, any two states of a quantum system may be coherently superposed to yield a novel state. Such a simple construction is at the heart of genuinely quantum phenomena such as interference of massive particles or quantum entanglement. Yet, these superpositions are susceptible to environmental influences, eventually leading to a complete disappearance of the system's quantum character. In principle, two distinct mechanisms responsible for this process of decoherence may be identified. In a classical decoherence setting, on the one hand, stochastic fluctuations of classical, ambient fields are the relevant source. This approach leads to a formulation in terms of stochastic Hamiltonians; the dynamics is unitary, yet stochastic. In a quantum decoherence scenario, on the other hand, the system is described in the language of open quantum systems. Here, the environmental degrees of freedom are to be treated quantum mechanically, too. The loss of coherence is then a direct consequence of growing correlations between system and environment. The purpose of the present thesis is to clarify the distinction between classical and quantum decoherence. It is known that there exist decoherence processes that are not reconcilable with the classical approach. We deem it desirable to have a simple, feasible model at hand of which it is known that it cannot be understood in terms of fluctuating fields. Indeed, we find such an example of true quantum decoherence. The calculation of the norm distance to the convex set of classical dynamics allows for a quantitative assessment of the results. In order to incorporate genuine irreversibility, we extend the original toy model by an additional bath. Here, the fragility of the true quantum nature of the dynamics under increasing coupling strength is evident. The geometric character of our findings offers remarkable insights into the geometry of the set of non-classical decoherence maps. We give a very intuitive geometrical measure---a volume---for the quantumness of dynamics. This enables us to identify the decoherence process of maximum quantumness, that is, having maximal distance to the convex set of dynamics consistent with the stochastic, classical approach. In addition, we observe a distinct correlation between the decoherence potential of a given dynamics and its achievable quantumness. In a last step, we study the notion of quantum decoherence in the context of a bipartite system which couples locally to the subsystems' respective environments. A simple argument shows that in the case of a separable environment the resulting dynamics is of classical nature. Based on a realistic experiment, we analyze the impact of entanglement between the local environments on the nature of the dynamics. Interestingly, despite the variety of entangled environmental states scrutinized, no single instance of true quantum decoherence is encountered. In part, the identification of the classical nature relies on numerical schemes. However, for a large class of dynamics, we are able to exclude analytically the true quantum nature.
4

The role of system-environment correlations in the dynamics of open quantum systems

Pernice, Ansgar 25 June 2013 (has links) (PDF)
In the present thesis the dynamics of the correlations between an open quantum system and its environment is investigated. This becomes feasible by means of a very useful representation of the total system-environment state. General conditions for separability and entanglement of the latter are derived, and investigated in the framework of an open quantum two-level system, which is coupled to a dissipative and a dephasing environment.
5

Off-Axis Elektronenholographie elastisch und unelastisch gestreuter Elektronen / Off-axis electron holography of elastically and inelastically scattered electrons

Röder, Falk 02 July 2013 (has links) (PDF)
Die Off-Axis-Elektronenholographie ist eine interferometrische Methode zur experimentellen Bestimmung von relativen Phasenschiebungen einer Elektronenwelle. Der Zugang zu diesen Phasenschiebungen ermöglicht z.B. die Bestimmung von intrinsischen elektrischen und magnetischen Feldern eines Objektes im Nanometerbereich. Für eine quantitative Interpretation der Resultate ist die Kenntnis des Rauschens der holographisch rekonstruierten Größen von hoher Bedeutung. In dieser Arbeit wird ein allgemeiner Formalismus abgeleitet, der den Rauschtransfer vom detektierten Hologramm in die rekonstruierten Amplituden- und Phasenbilder beschreibt. Anhand zielgerichteter Experimente wird dieser Formalismus unter Berücksichtigung von gemessenen Rauscheigenschaften des Detektors verifiziert. Im Zuge dessen wird eine experimentelle Methode entwickelt, die es erlaubt, durch Serienaufnahmen und Mittelungsprozeduren das Signal-zu-Rauschverhältnis in den holographischen Resultaten bei gleichbleibender Ortsauflösung erheblich zu verbessern. Daran knüpft sich eine Vielzahl von Anwendungen an, welche in dieser Arbeit in Auszügen aufgeführt werden. Die Grundlage für all diese Experimente besteht in den Welleneigenschaften des Elektrons, welche in der Interferenzfähigkeit (Kohärenz) des Elektrons zum Ausdruck kommen. Elektronen, welche unelastisch an einem Objekt streuen, verlieren diese Eigenschaft und es stellt sich die Frage, ob aus diesem Verlust zusätzliche Informationen über den Streuprozess bzw. über das Objekt selbst gewonnen werden können. Eine Größe, die neben der Intensität auch die Kohärenz der Elektronen beschreibt, ist die reduzierte Dichtematrix. Das motiviert, die Methode der Off-Axis-Elektronenholographie in der Sprache der Dichtematrizen zu formulieren und eine allgemeine Übertragungstheorie für ein holographiefähiges Transmissionselektronenmikroskop abzuleiten. Diese Theorie umfasst alle bisher bekannten Phänomene im Rahmen der Elektronenholographie und bietet darüber hinaus neue instrumentelle Ansätze zur Optimierung des Signal-zu-Rausch-Verhältnisses und zur Überwindung auflösungsbegrenzender Aberrationen. Vor diesem Hintergrund wird weiterhin die Kohärenz von Elektronen mittels energiegefilterter Off-Axis-Elektronenholographie untersucht, welche unelastisch an Siliziumoberflächen streuen und charakteristische Oberflächenplasmonen anregen. Für die Interpretation der Resultate werden zwei Modelle für die Dekohärenz des Elektrons infolge der Wechselwirkung mit einer Objektoberfläche entwickelt und unter Berücksichtigung der Aberrationen des Energiefilters mit dem Experiment verglichen. / Off-axis electron holography provides access to the relative phase shift of an electron wave and allows the experimental determination of intrinsic electric and magnetic fields within an object at nanometre scale. A quantitative interpretation of the results requires the knowledge about the noise in the reconstructed data. In this work, a general formalism is derived describing the transfer of noise from an experimental hologram into reconstructed amplitude and phase images. Concerted experiments verify this formalism under consideration of measured noise properties of the detector. In this frame, a method based on series acquisition and averaging is developed to improve significantly the signal-to-noise ratio of the reconstructed amplitude and phase images at constant spatial resolution. The usefulnes of this method is demonstrated by selected experimental examples from the materials sciences. The capability to show interference, i.e. to be coherent, is a consequence of the electron's wave nature and provides the fundament for all applications of electron holography. By inelastic interaction with the object, the electron loses coherence and the question comes up, whether this loss mechanism contains additional information about the scattering process or even about the object itself. The reduced density matrix is introduced as a suitable quantity describing both intensity and coherence of scattered electrons. That motivates to formulate off-axis electron holography in the language of density matrices and to derive a general transfer theory for this quantity in a holography-dedicated transmission electron microscope. This theory reproduces all known phenomena related to off-axis electron holography and provides new instrumental approaches to improve the signal-to-noise ratio and to overcome resolution limiting aberrations. In this context, the coherence of electrons, which are inelastically scattered by silicon surfaces and have excited characteristic surface plasmons, is investigated by energy-filtered electron holography. For the interpretation of the experimental results, two models are developed for the decoherence of the electron by interaction with an object surface and are compared to the experiment under consideration of the aberrations of the energy-filter.
6

Semiclassical hybrid dynamics for open quantum systems

Goletz, Christoph-Marian 22 June 2011 (has links)
In this work the semiclassical hybrid dynamics is extended in order to be capable of treating open quantum systems considering finite baths. The corresponding phenomena, i.e. decoherence and dissipation, are investigated for various scenarios.
7

The role of system-environment correlations in the dynamics of open quantum systems

Pernice, Ansgar 25 March 2013 (has links)
In the present thesis the dynamics of the correlations between an open quantum system and its environment is investigated. This becomes feasible by means of a very useful representation of the total system-environment state. General conditions for separability and entanglement of the latter are derived, and investigated in the framework of an open quantum two-level system, which is coupled to a dissipative and a dephasing environment.
8

Off-Axis Elektronenholographie elastisch und unelastisch gestreuter Elektronen

Röder, Falk 30 May 2013 (has links)
Die Off-Axis-Elektronenholographie ist eine interferometrische Methode zur experimentellen Bestimmung von relativen Phasenschiebungen einer Elektronenwelle. Der Zugang zu diesen Phasenschiebungen ermöglicht z.B. die Bestimmung von intrinsischen elektrischen und magnetischen Feldern eines Objektes im Nanometerbereich. Für eine quantitative Interpretation der Resultate ist die Kenntnis des Rauschens der holographisch rekonstruierten Größen von hoher Bedeutung. In dieser Arbeit wird ein allgemeiner Formalismus abgeleitet, der den Rauschtransfer vom detektierten Hologramm in die rekonstruierten Amplituden- und Phasenbilder beschreibt. Anhand zielgerichteter Experimente wird dieser Formalismus unter Berücksichtigung von gemessenen Rauscheigenschaften des Detektors verifiziert. Im Zuge dessen wird eine experimentelle Methode entwickelt, die es erlaubt, durch Serienaufnahmen und Mittelungsprozeduren das Signal-zu-Rauschverhältnis in den holographischen Resultaten bei gleichbleibender Ortsauflösung erheblich zu verbessern. Daran knüpft sich eine Vielzahl von Anwendungen an, welche in dieser Arbeit in Auszügen aufgeführt werden. Die Grundlage für all diese Experimente besteht in den Welleneigenschaften des Elektrons, welche in der Interferenzfähigkeit (Kohärenz) des Elektrons zum Ausdruck kommen. Elektronen, welche unelastisch an einem Objekt streuen, verlieren diese Eigenschaft und es stellt sich die Frage, ob aus diesem Verlust zusätzliche Informationen über den Streuprozess bzw. über das Objekt selbst gewonnen werden können. Eine Größe, die neben der Intensität auch die Kohärenz der Elektronen beschreibt, ist die reduzierte Dichtematrix. Das motiviert, die Methode der Off-Axis-Elektronenholographie in der Sprache der Dichtematrizen zu formulieren und eine allgemeine Übertragungstheorie für ein holographiefähiges Transmissionselektronenmikroskop abzuleiten. Diese Theorie umfasst alle bisher bekannten Phänomene im Rahmen der Elektronenholographie und bietet darüber hinaus neue instrumentelle Ansätze zur Optimierung des Signal-zu-Rausch-Verhältnisses und zur Überwindung auflösungsbegrenzender Aberrationen. Vor diesem Hintergrund wird weiterhin die Kohärenz von Elektronen mittels energiegefilterter Off-Axis-Elektronenholographie untersucht, welche unelastisch an Siliziumoberflächen streuen und charakteristische Oberflächenplasmonen anregen. Für die Interpretation der Resultate werden zwei Modelle für die Dekohärenz des Elektrons infolge der Wechselwirkung mit einer Objektoberfläche entwickelt und unter Berücksichtigung der Aberrationen des Energiefilters mit dem Experiment verglichen. / Off-axis electron holography provides access to the relative phase shift of an electron wave and allows the experimental determination of intrinsic electric and magnetic fields within an object at nanometre scale. A quantitative interpretation of the results requires the knowledge about the noise in the reconstructed data. In this work, a general formalism is derived describing the transfer of noise from an experimental hologram into reconstructed amplitude and phase images. Concerted experiments verify this formalism under consideration of measured noise properties of the detector. In this frame, a method based on series acquisition and averaging is developed to improve significantly the signal-to-noise ratio of the reconstructed amplitude and phase images at constant spatial resolution. The usefulnes of this method is demonstrated by selected experimental examples from the materials sciences. The capability to show interference, i.e. to be coherent, is a consequence of the electron's wave nature and provides the fundament for all applications of electron holography. By inelastic interaction with the object, the electron loses coherence and the question comes up, whether this loss mechanism contains additional information about the scattering process or even about the object itself. The reduced density matrix is introduced as a suitable quantity describing both intensity and coherence of scattered electrons. That motivates to formulate off-axis electron holography in the language of density matrices and to derive a general transfer theory for this quantity in a holography-dedicated transmission electron microscope. This theory reproduces all known phenomena related to off-axis electron holography and provides new instrumental approaches to improve the signal-to-noise ratio and to overcome resolution limiting aberrations. In this context, the coherence of electrons, which are inelastically scattered by silicon surfaces and have excited characteristic surface plasmons, is investigated by energy-filtered electron holography. For the interpretation of the experimental results, two models are developed for the decoherence of the electron by interaction with an object surface and are compared to the experiment under consideration of the aberrations of the energy-filter.
9

On Quantum Simulators and Adiabatic Quantum Algorithms

Mostame, Sarah 22 January 2009 (has links) (PDF)
This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small – which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover’s search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.
10

On Quantum Simulators and Adiabatic Quantum Algorithms

Mostame, Sarah 28 November 2008 (has links)
This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small – which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover’s search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.

Page generated in 0.0423 seconds