• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 7
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 62
  • 62
  • 59
  • 36
  • 35
  • 30
  • 27
  • 25
  • 23
  • 20
  • 10
  • 10
  • 9
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Elaboração de protocolo de ensaios mecânicos para avaliação da performance do material PLA através da manufatura aditiva por meio do processo FDM / Preparation of mechanical test protocol for evaluation of pla material performance through additive manufacturing by fdm process

Branco, Rodolfo Ramos Castelo 19 December 2016 (has links)
Submitted by Jean Medeiros (jeanletras@uepb.edu.br) on 2018-05-24T14:11:32Z No. of bitstreams: 1 PDF - Rodolfo Ramos Castelo Branco.pdf: 33386528 bytes, checksum: d16a1c9b6b747be04f2968cf6f66ceaf (MD5) / Approved for entry into archive by Secta BC (secta.csu.bc@uepb.edu.br) on 2018-06-05T11:33:25Z (GMT) No. of bitstreams: 1 PDF - Rodolfo Ramos Castelo Branco.pdf: 33386528 bytes, checksum: d16a1c9b6b747be04f2968cf6f66ceaf (MD5) / Made available in DSpace on 2018-06-05T11:33:25Z (GMT). No. of bitstreams: 1 PDF - Rodolfo Ramos Castelo Branco.pdf: 33386528 bytes, checksum: d16a1c9b6b747be04f2968cf6f66ceaf (MD5) Previous issue date: 2016-12-19 / Technological innovation has been a constant in several areas in the contemporary world, emphasizing in the areas of engineering and health. In this scenario, there is the Additive Manufacturing (MA), which consists of a manufacturing process using the addition of material in successive flat layers, in which it is possible to generate 3D physical parts obtained directly from CAD (Computer Aided Design). The MA is divided into several processes, in this study it will be highlighted by Fusion and Deposition Modeling (FDM) of the solids class, which uses solid polymer coils, especially Poly lactic acid (PLA). This technology of manufacturing process has been gaining more and more prominence in the technological scenario, with which it is possible to affirm that the Additive Manufacturing is on a scale of growth, being considered by many scholars as the new industrial revolution, which obviously opens space for New research in the area, thus necessitating the consolidation of processes, machinery and materials. In this context of recognition of the participation that the Additive Manufacturing process has been achieving, this study aimed to elaborate mechanical testing protocols for the evaluation of PLA material performance through the MA from the FDM process. The applied methodology was based on studying the parameters of construction of the pieces in FDM (structure, raster, deposition rate, temperature, loops, orientation of the raster angle, position orientation of the pieces, among others), to perform the mechanical tests of the Type and analyze the results obtained through strain-strain graphs (maximum tensions, rupture and modulus of elasticity). The result obtained evidenced little difference between the deposition rates (20%, 50% and 100%) regarding the construction time. Regarding the mechanical properties, the pieces with 100% fill characteristics in their internal structure presented better tensions. It was also observed the influence of the position of construction of the specimens in the printing tray, changing its mechanical characteristics. / A inovação tecnológica tem sido uma constante em diversas áreas no mundo contemporâneo, destacando-se nas áreas de engenharia e saúde. Neste cenário, encontra-se a Manufatura Aditiva (MA), que consiste em um processo de fabricação utilizando a adição de material em camadas planas sucessivas, no qual é possível gerar peças físicas em 3D, obtidas diretamente de arquivos de modelagem CAD (Computer Aided Design). A MA divide-se em vários processos, neste estudo será destacado por Modelagem de fusão e deposição (FDM) da classe dos sólidos, o qual utiliza bobinas de polímeros sólidos, especialmente o Poli ácido láctico (PLA). Esta tecnologia de processo de fabricação vem ganhando cada vez mais destaque no cenário tecnológico, com isso é possível afirmar que a Manufatura aditiva se encontra em uma escala de crescimento, sendo considerada por muitos estudiosos como a nova revolução industrial, o que obviamente abre espaço para novas pesquisas na área, havendo assim a necessidade da consolidação dos processos, máquinas e materiais. Neste contexto de reconhecimento da participação que o processo de Manufatura Aditiva vem alcançando, este estudo visou elaborar protocolos de ensaios mecânicos para avaliação de performance do material PLA através da MA a partir do processo FDM. A metodologia aplicada baseou-se em estudar os parâmetros de construção das peças em FDM (estrutura, raster, taxa de deposição, temperatura, loops, orientação do ângulo raster, orientação da posição das peças, dentre outros), em realizar os ensaios mecânicos do tipo tração e analisar os resultados obtidos através dos gráficos de tensão-deformação (tensões máxima, ruptura e modulo de elasticidade). O resultado obtido evidenciou pouca diferença entre as taxas de deposição (20%, 50% e 100%) no tocante ao tempo de construção. Em relação as propriedades mecânicas, as peças de características 100% de preenchimento em sua estrutura interna apresentaram melhores tensões. Observou-se também, a influência da posição de construção dos corpos de prova na bandeja de impressão, alterando suas características mecânicas.
42

A STUDY ON THE SURFACE TOPOGRAPHY AND DIMENSIONAL ACCURACY OF FUSED DEPOSITION MODELING : THE EFFECTS OF SURFACE ORIENTATION AND DIFFERENT PRINT SETTINGS

Berrimi, Chihab Eddine, Chaparala, Anish January 2017 (has links)
The ease of manufacturing complex geometries using fused deposition modeling (FDM) 3D-Printing reduces the overall production cost compared with the traditional manufacturing techniques. Because of the benefits of 3D printing technologies, it is proposed to be used in the manufacturing of different products. But there is still no definite characterization of the surface quality of objects manufactured by 3D printing. Hence in order to define the texture of the surfaces produced, measurements from different samples are taken and quantified.In this study, a 3D test model consisting of various slopes is printed at different layer thicknesses and different print speeds using different 3D printers.Thus, the effect of the surface orientation on the surface roughness was studied in relation to the different layer thicknesses and different print speeds. The study samples are measured using the state of the art equipment at Halmstad University.This thesis studies the surface roughness at different slopes of FDM models.A related study on the dimensional variation between the CAD model and the actual3D printed model, and causes/reasons for the variations are analyzed.It is observed that FDM produced part surface topography is directly affected by the orientation of the surface. Also, the surface roughness increases with increase in layer thickness. The observed correlations between surface roughness and layer thickness and surface orientation could be used to better understand the behavior of FDM surfaces, thus to better quantify the surface roughness. To improve quality, it must first be quantified. It is well observed that dimensional inaccuracy exists between the CAD model and the printed part. These results suggest that there is a lot of work and improvements to be done in order to close the gap of dimensional inaccuracy and achieve a high precision commercial FDM 3Dprinting.
43

A Study of Digital RF Phase Shifters Fabricated With Additive Manufacturing

Vega, Yaniel 30 October 2015 (has links)
Digital RF phase shifters fabricated using additive manufacturing processes are presented and studied. The purpose is to explain the performance differences between phase shifters fabricated using additive manufacturing and those fabricated with conventional subtractive techniques. All phase shifters are designed to operate at a center frequency of 2.45 GHz with a 100 MHz bandwidth. The 1-bit 45° switched line phase shifters have an average insertion loss of 1.3 dB and a 220 mm2 footprint, while the 1-bit 180° high-pass low-pass phase shifters have an insertion loss 1.56 dB and a 180 mm2 footprint. The 4-bit high-pass low-pass, switched line hybrid phase shifters on the other hand show an average state insertion loss of 5.4 dB and have a 660 mm2 foot print. By carefully analyzing the performance of the various phase shifter designs it is shown that the limiting factors of additive manufacturing technology are the low conductivity of CB028 silver ink in comparison to copper, and the inability to print dielectrics with low surface roughness. Finally, parallel plate capacitors and a spiral inductor designed to be fabricated using additive manufacturing techniques are studied. This is done in order to better understand the advantages and disadvantages of such a design. By analyzing the component’s simulated performance it is shown that 3D printed capacitors and inductors are feasible as long as the capacitance or inductance values needed are low. Large value 3D printed components are impractical for RF applications due to their large size.
44

Mechanické vlastnosti polymerů vyrobených 3D tiskem / Mechanical properties of polymers produced by 3D printing technology

Král, Filip January 2018 (has links)
The thesis deals with the dependence of mechanical characteristics on the anisotropy of polymers Nylon 12 and Ultem 9085 made by a 3D printing technology Fused Deposition Modeling (FDM). The evaluation of the material characteristics was performed on the basis of tensile and non-instrumental impact tests. It was proven that the material characteristics are strongly dependent on anisotropy, i.e. on layer thickness and raster angle for both types of polymers.
45

Perimeter / Perimeter

Prusic, André January 2014 (has links)
The project explores the possibilities of using additive manufacturing (3d-printing) to build architecture. Through a combination of theoretical research and practical experiments a building system has been developed which has the capabilities to create houses with great geometric flexibilities to a affordable price today. The construction system Perimeter is demonstrated in a pavilion situated at Norra Djurgården in Stockholm. / Projektet undersöker möjligheterna att använda additiv tillverkning (3d-printning) för att bygga arkitekturen. Genom en kombination av teoretisk forskning och praktiska experiment har ett byggsystem utvecklats som har kapacitet att skapa hus med stora geometriska flexibilitet till ett överkomligt pris i dag. Konstruktionssystemet Perimeter demonstreras i en paviljong belägen på Norra Djurgården i Stockholm.
46

A Study of Additive manufacturing Consumption, Emission, and Overall Impact With a Focus on Fused Deposition Modeling

Timothy Simon (9746375) 28 July 2021 (has links)
<p>Additive manufacturing (AM) can be an advantageous substitute to various traditional manufacturing techniques. Due to the ability to rapidly create products, AM has been traditionally used to prototype more efficiently. As the industry has progressed, however, use cases have gone beyond prototyping into production of complex parts with unique geometries. Amongst the most popular of AM processes is fused deposition modeling (FDM). FDM fabricates products through an extrusion technique where plastic filament is heated to the glass transition temperature and extruded layer by layer onto a build platform to construct the desired part. The purpose of this research is to elaborate on the potential of this technology, while considering environmental impact as it becomes more widespread throughout industry, research, and academia.</p> <p>Although AM consumes resources more conservatively than traditional methodologies, it is not free from having environmental impacts. Several studies have shown that additive manufacturing can affect human and environmental health by emitting particles of a dynamic size range into the surrounding environment during a print. To begin this study, chapters investigate emission profiles and characterization of emissions from FDM 3D printers with the intention of developing a better understanding of the impact from such devices. Background work is done to confirm the occurrence of particle emission from FDM using acrylonitrile butadiene styrene (ABS) plastic filament. An aluminum bodied 3D printer is enclosed in a chamber and placed in a Class 1 cleanroom where measurements are conducted using high temporal resolution electrical low-pressure impactor (ELPI), scanning mobility particle sizer (SMPS), and optical particle sizer (OPS), which combined measure particles of a size range 6-500nm. Tests were done using the NIST standard test part and a honeycomb infill cube. Results from this study show that particle emissions are closely related to filament residence time in the extruder while less related to extruding speed. An initial spike of particle concentration is observed immediately after printing, which is likely a result of the long time required to heat the extruder and bed to the desired temperature. Upon conclusion of this study, it is theorized that particles may be formed through vapor condensation and coagulation after being released into the surrounding environment.</p> <p>With confirmation of FDM ultrafine particle emission at notable concentrations, an effort was consequently placed on diagnosing the primary cause of emission and energy consumption based on developed hypotheses. Experimental data suggests that particle emission is mainly the result of condensing and agglomerating semi-volatile organic compounds. The initial emission spike occurs when there is dripping of semi-liquid filament from the heated nozzle and/or residue left in the nozzle between prints; this supports the previously stated hypothesis regarding residence time. However, the study shows that while printing speed and material flow influence particle emission rate, the effects from these factors are relatively insignificant. Power profile analysis indicates that print bed heating and component temperature maintaining are the leading contributors to energy consumption for FDM printers, making time the primary variable driving energy input.</p> <p>To better understand the severity of FDM emissions, further investigation is necessary to diligence the makeup of the process output flows. By collecting exhaust discharge from a Makerbot Replicator 2x printing ABS filament and diffusing it through a type 1 water solution, we are able to investigate the chemical makeup of these compounds. Additional exploration is done by performing a filament wash to investigate emissions that may already be present before extrusion. Using solid phase micro-extraction, contaminants are studied using gas chromatography mass spectrometry (GCMS) thermal desorption. Characterization of the collected emission offers more comprehensive knowledge of the environmental and human health impacts of this AM process.</p> <p>Classification of the environmental performance of various manufacturing technologies can be achieved by analyzing their input and output material, as well as energy flows. The unit process life cycle inventory (UPLCI) is a proficient approach to developing reusable models capable of calculating these flows. The UPLCI models can be connected to estimate the total material and energy consumption of, and emissions from, product manufacturing based on a process plan. The final chapter focuses on using the knowledge gained from this work in developing UPLCI model methodology for FDM, and applying it further to the second most widely used AM process: stereolithography (SLA). The model created for the FDM study considers material input/output flows from ABS plastic filament. Energy input/output flows come from the running printer, step motors, heated build plate, and heated extruder. SLA also fabricates parts layer by layer, but by the use of a photosensitive liquid resin which solidifies when cured under the exposure of ultraviolet light. Model material input/output flows are sourced from the photosensitive liquid resin, while energy input/output flows are generated from (i) the projector used as the ultraviolet light source and (ii) the step motors. As shown in this work, energy flow is mostly time dependent; material flows, on the other hand, rely more on the nature of the fabrication process. While a focus on FDM is asserted throughout this study, the developed UPLCI models show how conclusions drawn from this work can be applied to different forms of AM processes in future work.</p>
47

CHARACTERIZING AND PREDICTING MECHANICAL PROPERTIES OF 3D PRINTED PARTS BY FUSED DEPOSITION MODELING (FDM)

Omar AlGafri (14165595) 07 December 2022 (has links)
<p>  </p> <p>This thesis is motivated by the author’s observation that no systematic methodology is available to characterize and model mechanical behaviors of 3D printed parts in terms of their elastic modulus and critical loading capacities. Note that the more controlled and steadier printing process is, the easier the mechanical properties parts can be predicted. This research focuses on the methods for the prediction and validation of mechanical properties of 3D printed parts, and the focus is the responses of the printed parts subjected to tensile loads. The mathematic models are derived to characterize the mechanical properties of a part along three principal directions, and the models are validated experimentally by following the American Society for Testing and Materials (ASTM) D638 testing standards. It is assumed that a unidirectional plane stress occurs to each lamina to (1) simplify a compliance matrix with a size 3 by 3 and (2) characterize the mechanical properties by the elastic modules and strengths in three principal directions. Two mathematical models are developed using the experimental data from the classical laminate theory and finite element analysis (FEA) by the SolidWorks. Both of the developed models are used to predict the ultimate tensile strength and Young’s modulus of the specimens that are printed by setting different raster angles on different layers. This thesis work aims to (1) gain a better understanding of the impact of printing parameters on the strengths of printed parts and (2) explore the feasibility of using the classical laminate theory to predict the mechanical properties of the parts printed with different raster angles and patterns. To validate the proposed mathematic models, parts by FDM are tested by following the ASTM testing standards; moreover, it testifies if the selected ASTM-D638 is suitable to test 3D printed parts by FDM. </p>
48

Stability Analysis of Additively Manufactured Isogrid

Ananth, Sirija January 2015 (has links)
No description available.
49

Mineral Matter Behavior During the Combustion of Biomass and Coal Blends and its Effect on Particulate Matter Emission, Ash Deposition, and Sulfur Dioxide Emission

Roy, Rajarshi 23 April 2024 (has links) (PDF)
Combustion of coal is one of the primary sources of electricity generation worldwide today. Coal contains different chemicals that cause particulate matter(PM) and sulfur dioxide (SO2) emissions. These are health hazards and are responsible for deteriorating the ambient air quality. Particulate matter also forms ash deposits inside the coal combustor, which in turn decreases the energy efficiency of the power plants. Using biomass as a fuel in these utility boilers can potentially reduce the problems of particulate matter emissions and ash deposition, and can significantly reduce the SO2 emissions. However, biomass needs to be pretreated to make its properties similar to coal in terms of energy density, grindability, and durability before it can be fired in utility boilers. Steam explosion is one of the leading biomass pretreatment methods that enhances the physicochemical properties of biomass. A comprehensive review of the steam explosion process, its product properties, its comparison with other treatment processes, as well as its economic analysis and lifecycle assessment, have been explored in this work. Steam-exploded biomass has been co-combusted with bituminous coal in a 1500 kWth combustor to analyze the ash aerosol particle size distribution, composition, and deposition behavior. The primary results of these tests showed that both particulate matter emissions and ash deposition amount reduced significantly as more biomass was co-fired with coal. The submicron-sized particulate matter concentration showed a high correlation with the final mass of ash deposits (R2 > 0.96). Predicting ash deposition rates is important during the combustion of solid fuels. A Machine Learning tool was applied and trained with a fuel composition database of 92 fuels obtained from a thermodynamic equilibrium software (FactSage). When fully operational, this model should be integrated with an existing ash deposition model, which should make it self-sufficient in terms of generating equilibrium composition data. SO2 emissions were analyzed during the co-combustion of biomass and coal, and a synergistic decrease in SO2 emissions was observed with higher biomass blends. Experiments were conducted in a full-scale 471 MWe furnace to analyze the SO2 emissions, and an 85%-15% blend of coal and biomass was responsible for a 28.1% reduction in emissions and 22.1% reduction in the lime slurry utilization in the flue gas desulfurization (FGD) towers compared to pure coal combustion. Ash deposit characterizations by energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) combined with thermodynamic equilibrium simulations revealed that calcium and potassium were responsible for this synergistic reduction as these metals captured the SO2 from the flue gases and retained them in the ash phase. The SO2 research was important since the current literature is deficient in research conducted at suspension-fired full-scale utility boilers to reduce SO2 emissions by co-firing coal and biomass blends. The research in this dissertation should provide valuable insights to the energy industries that are considering a transformation of fuel portfolio from coal to biomass and explore how the mineral matter present in pretreated biomass would behave inside a utility boiler. The primary conclusions are that during the co-combustion of coal and biomass, ash deposition mass and particulate matter ash load decreased, and SO2 emission saw a synergistic reduction in emissions due to higher calcium and potassium content in biomass compared to pure coal combustion.
50

<b>3D PRINTED FLEXIBLE SENSORS AND SOFT PNEUMATIC ACTUATORS WITH EMBEDDED DIELECTRIC ELECTROACTIVE POLYMERS FOR GRIPPING AND REHABILITATION APPLICATIONS</b>

Hernan David Moreno Rueda Sr (16929609) 23 April 2024 (has links)
<p dir="ltr">The present work expands the state of the art in the design of soft actuators and flexible sensors manufactured through fused deposition modelling (FDM) and direct ink writing (DIW). The first design consisted of flexible sensors for rehabilitation. Three different designs were tested and compared according to their sensitivity and accuracy. The flexible sensor successfully responded to deformation by changing its resistance. The first design of soft actuator was the Closed Dual Pneumatic Bellow Actuator. The soft actuator was manufactured using FDM and included an inner chamber in which the input air flows through and produces the actuation. The actuator also included dielectric electroactive polymer (DEAP) that showed response to pressure between the actuator and the object to be grasped. The electrodes of the DEAP were manufactured using commercial conductive TPU. A second soft actuator was designed with a circular shape and embedded DEAP. The electrodes in the DEAP consisted of conductive carbon grease. Previous tests were performed to assess the functionality of a DEAP structure using conductive carbon grease. The DEAP showed an increase in capacitance as pressure was applied on one side of the structure parallel to the electrodes and computational simulations validated such response. Future work using the sensors and actuators presented includes the implementation of a closed-loop system to the soft actuators, using the readouts of the sensors to adjust the input pressure and apply precise pressure on objects. The flexible sensor for rehabilitation has the potential to be implemented in each of the fingers of the hand and use the data to characterize the movement of the hand under different configurations providing feedback to patients in task-oriented therapy.</p>

Page generated in 0.5041 seconds