• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 653
  • 155
  • 138
  • 104
  • 79
  • 22
  • 18
  • 18
  • 15
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1502
  • 198
  • 195
  • 182
  • 173
  • 160
  • 141
  • 138
  • 136
  • 119
  • 108
  • 107
  • 101
  • 97
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
601

The Effect of HV Impulses on Partial Discharge Activity and on the Dielectric Response in Oil-impregnated Paper Insulation

Kiiza, Respicius Clemence January 2014 (has links)
This work investigates how HV impulses affect the behavior of partial discharge (PD) activity and the low voltage dielectric response of oil-impregnated paper insulation. It also investigates how the change in the PD activity is related to the degradation level of oil-impregnated paper insulation. In order to accomplish these objectives, the ageing were done under three different electrical stress conditions, i.e. HV impulses following an early stage 50 Hz AC PD activity, a prolonged PD activity at a 50 Hz AC stress alone, and a combination of HV impulses and a prolonged PD activity at a 50 Hz AC stress. In order to predict the level of deterioration caused by each ageing stress condition, the dielectric spectroscopy (DS) measurements in a frequency range of 1.0 mHz to 1.0 kHz were performed before and after subjecting a test object to each of the ageing stress conditions.      The investigations were mainly done on the test samples consisting of a cavity deliberately introduced between the layers of oil-impregnated paper. Additionally, the investigation about the effect of HV impulses alone on the DS results was done on aged oil-impregnated paper transformer bushing.      The PD experimental results presented in this thesis indicate that HV impulses below the impulse breakdown stress following an early stage AC PD activity will neither cause a significant change in phase resolved partial discharge (PRPD) patterns nor damage oil-impregnated paper insulation to a level that can be noticed with visual observations. On the other hand, a prolonged PD activity at a 50 Hz AC stress can cause the change in PRPD patterns by decreasing the total PD charge and the number of PD pulses, but cannot quickly damage the oil-impregnated paper insulation as it would do when it is combined with HV impulses. In addition to that, the results show that the combination of both, HV impulses and a prolonged PD activity at a 50 Hz AC stress can cause a high drop in the PD parameters (total PD charge and number of PD pulses).       The DS results show that HV impulses below the impulse breakdown stress following an early stage 50 Hz AC PD activity will not cause a significant increase in the real part of the complex capacitance and in the dissipation factor as they will do when they are combined with a prolonged PD activity at a 50 Hz AC stress. Further, the dielectric spectroscopy results obtained every three hours during the ageing of oil-impregnated paper insulation by a prolonged PD activity at an AC stress show that the dissipation factor will increase, but the PD parameters (total PD charge and the repetition rate) will decrease with time of PD application. For a case of the aged oil-impregnated paper transformer bushing, HV impulses of amplitudes up to 200 kV did not result in the change in the dissipation factor curve before removing insulating oil from the bushing. However, after removing about 2.5 liters of insulating oil from the bushing, HV impulses resulted in the change in the dissipation factor curve. The magnitudes of the dissipation factor curves appeared to be much higher in the middle frequencies region, i.e. the frequencies between 10 mHz and 100 Hz. After refilling the bushing with the same insulating oil, the loss peak shifted towards the higher frequencies.      To understand how the ageing by-products initiated by PDs in the small cavity can modify the geometry of oil-impregnated paper insulation; the model of oil-impregnated paper insulation, comprising of a small cavity, was implemented in Finite Element Method (FEM) software (COMSOL Multiphysics 4.2a). The comparison between the simulation and experimental results show that PD by-products will result in two zones, i.e. aged and unaged zones, and the aged zone will grow with time of PD application; thereby increasing the dissipation factor. On the other hand, in order to interpret  the change in the dissipation factors for the dielectrics in aged oil-impregnated paper transformer bushing after had been exposed to HV impulses, a model of a part of the condenser body (oil-paper insulation) was also implemented in the FEM software (COMSOL Multiphysics 4.2a). To model a condition of low insulating oil level in the bushing, a part of oil subdomains was replaced with the air dielectric properties. A comparison between the simulation and experimental dissipation factor curves indicate that HV impulses will produce the by-products (ions), which will increase the conductivity of air when the bushing has low insulating oil level. On refilling the bushing with the same insulating oil, the insulating oil will take these ions and the reactions between the aged insulating oil by-products (such as acids) and the ions, may produce more ions, thereby increasing further the conductivity of the insulating oil. / <p>QC 20140303</p>
602

Integrated Circuit and Antenna Technology for Millimeter-wave Phased Array Radio Front-end

Nezhad Ahmadi Mohabadi, Mohammad Reza January 2010 (has links)
Ever growing demands for higher data rate and bandwidth are pushing extremely high data rate wireless applications to millimeter-wave band (30-300GHz), where sufficient bandwidth is available and high data rate wireless can be achieved without using complex modulation schemes. In addition to the communication applications, millimeter-wave band has enabled novel short range and long range radar sensors for automotive as well as high resolution imaging systems for medical and security. Small size, high gain antennas, unlicensed and worldwide availability of released bands for communication and a number of other applications are other advantages of the millimeter-wave band. The major obstacle for the wide deployment of commercial wireless and radar systems in this frequency range is the high cost and bulky nature of existing GaAs- and InP-based solutions. In recent years, with the rapid scaling and development of the silicon-based integrated circuit technologies such as CMOS and SiGe, low cost technologies have shown acceptable millimeter-wave performance, which can enable highly integrated millimeter-wave radio devices and reduce the cost significantly. Furthermore, at this range of frequencies, on-chip antenna becomes feasible and can be considered as an attractive solution that can further reduce the cost and complexity of the radio package. The propagation channel challenges for the realization of low cost and reliable silicon-based communication devices at millimeter-wave band are severe path loss as well as shadowing loss of human body. Silicon technology challenges are low-Q passive components, low breakdown voltage of active devices, and low efficiency of on-chip antennas. The main objective of this thesis is to investigate and to develop antenna and front-end for cost-effective silicon based millimeter-wave phased array radio architectures that can address above challenges for short range, high data rate wireless communication as well as radar applications. Although the proposed concepts and the results obtained in this research are general, as an important example, the application focus in this research is placed on the radio aspects of emerging 60 GHz communication system. For this particular but extremely important case, various aspects of the technology including standard, architecture, antenna options and indoor propagation channel at presence of a human body are studied. On-chip dielectric resonator antenna as a radiation efficiency improvement technique for an on-chip antenna on low resistivity silicon is presented, developed and proved by measurement. Radiation efficiency of about 50% was measured which is a significant improvement in the radiation efficiency of on-chip antennas. Also as a further step, integration of the proposed high efficiency antenna with an amplifier in transmit and receive configurations at 30 GHz is successfully demonstrated. For the implementation of a low cost millimeter-wave array antenna, miniaturized, and efficient antenna structures in a new integrated passive device technology using high resistivity silicon are designed and developed. Front-end circuit blocks such as variable gain LNA, continuous passive and active phase shifters are investigated, designed and developed for a 60GHz phased array radio in CMOS technology. Finally, two-element CMOS phased array front-ends based on passive and active phase shifting architectures are proposed, developed and compared.
603

Quantum and Classical Optics of Dispersive and Absorptive Structured Media

Bhat, Navin Andrew Rama 26 February 2009 (has links)
This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schr\"{o}dinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF$_2$ metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100$\%$ or more for common media regardless of geometry if the pump is near the band edge. Furthermore, I derive a 3D three-wave group velocity walkoff factor; due to the interplay of a topological property with a symmetry property, I show that even if down-conversion is into a narrow forward cone, neglect of the transverse walkoff can lead to an overestimate of the SPDC energy by orders of magnitude.
604

Quantum and Classical Optics of Dispersive and Absorptive Structured Media

Bhat, Navin Andrew Rama 26 February 2009 (has links)
This thesis presents a Hamiltonian formulation of the electromagnetic fields in structured (inhomogeneous) media of arbitrary dimensionality, with arbitrary material dispersion and absorption consistent with causality. The method is based on an identification of the photonic component of the polariton modes of the system. Although the medium degrees of freedom are introduced in an oscillator model, only the macroscopic response of the medium appears in the derived eigenvalue equation for the polaritons. For both the discrete transparent-regime spectrum and the continuous absorptive-regime spectrum, standard codes for photonic modes in nonabsorptive systems can easily be leveraged to calculate polariton modes. Two applications of the theory are presented: pulse propagation and spontaneous parametric down-conversion (SPDC). In the propagation study, the dynamics of the nonfluctuating part of a classical-like pulse are expressed in terms of a Schr\"{o}dinger equation for a polariton effective field. The complex propagation parameters of that equation can be obtained from the same generalized dispersion surfaces typically used while neglecting absorption, without incurring additional computational complexity. As an example I characterize optical pulse propagation in an Au/MgF$_2$ metallodielectric stack, using the empirical response function, and elucidate the various roles of Bragg scattering, interband absorption and field expulsion. Further, I derive the Beer coefficient in causal structured media. The SPDC calculation is rigorous, captures the full 3D physics, and properly incorporates linear dispersion. I obtain an expression for the down-converted state, quantify pair-production properties, and characterize the scaling behavior of the SPDC energy. Dispersion affects the normalization of the polariton modes, and calculations of the down-conversion efficiency that neglect this can be off by 100$\%$ or more for common media regardless of geometry if the pump is near the band edge. Furthermore, I derive a 3D three-wave group velocity walkoff factor; due to the interplay of a topological property with a symmetry property, I show that even if down-conversion is into a narrow forward cone, neglect of the transverse walkoff can lead to an overestimate of the SPDC energy by orders of magnitude.
605

Ultrafast Quantum Control of Exciton Dynamics in Semiconductor Quantum Dots

Gamouras, Angela 23 September 2013 (has links)
Controlling the quantum states of charge (excitons) or spin-polarized carriers in semiconductor quantum dots (QDs) has been the focus of a considerable research effort in recent years due to the strong promise of using this approach to develop solid state quantum computing hardware. The long-term scalability of this type of quantum computing architecture is enhanced by the use of QDs emitting in the telecom band, which would exploit the established photonic infrastructure. This thesis reports the use of all optical infrared experimental techniques to control exciton dynamics in two different QD samples consisting of InAs/GaAs QDs and InAs/InP QDs within a planar microcavity. An infrared quantum control apparatus was developed and used to apply optimized shaping masks to ultrafast pulses from an optical parametric oscillator. Pulse shaping protocols designed to execute a two-qubit controlled-rotation operation on an individual semiconductor QD were demonstrated and characterized. The quantum control apparatus was then implemented in simultaneous single qubit rotations using two uncoupled, distant InAs/GaAs QDs. These optimal control experiments demonstrated high fidelity optical manipulation of exciton states in the two QDs using a single broadband laser pulse, representing a step forward on the path to a scalable QD architecture and showcasing the power of pulse shaping techniques for quantum control on solid state qubits. As an alternative to single QDs, which have very low optical signals, subsets of QDs within an ensemble can be used in quantum computing applications. To investigate the mediation of inhomogeneities in a QD ensemble, pump-probe experiments were performed on InAs/InP QDs within a dielectric Bragg stack microcavity. Two different excitation geometries showed that the angle dependence of the microcavity transmission allowed for the spectral selection of QD subsets with transition energies resonant with the cavity mode. The microcavity mitigated inhomogeneities in the ensemble while providing a basis for addressing QD subsets which could be used as distinguishable quantum bits. This thesis work shows significant advances towards an optical computing architecture using quantum states in semiconductor QDs.
606

Dielektrinių dangų optinis atsparumas pasikartojantiems femtosekundiniams lazerio impulsams / Optical resistance of dielectric coatings to multi-pulse femtosecond laser radiation

Melninkaitis, Andrius 08 April 2009 (has links)
Pagrindinis šio darbo tikslas - eksperimentiškai ir teoriškai išnagrinėti fundamentinius bei technologinius veiksnius, apribojančius dielektrinių dangų optinį atsparumą pasikartojantiems femtosekundinės trukmės lazerio impulsams. Specialiai šiems tyrimams atlikti buvo sukurta automatizuota eksperimentinė įranga, kuri pagreitino pažeidimo slenksčio matavimus ir minimizavo žmogiškąjį faktorių. Darbo metu eksperimentiškai buvo tiriamos tiek vienasluoksnės TiO2, tiek ir didelio atspindžio koeficiento daugiasluoksnės ZrO2/SiO2, HfO2/SiO2, Ta2O5/SiO2 bei TiO2/SiO2 dangos, padengtos skirtingais būdais. Pirmą kartą eksperimentiškai pademonstruota, kad dėl daugiafotonės sugerties įtakos dielektrinių dangų pažeidimo slenkstis, tolydžiai keičiant femtosekundinių impulsų bangos ilgį, kinta šuoliškai. Kartu pademonstruotos ir teorinės šio rezultato prielaidos. Eksperimentiškai pademonstruota, kad didelio atspindžio koeficiento dangose stovinčiosios elektromagnetinės bangos pūpsnius „perstūmus“ į žemesnio lūžio rodiklio sluoksnius padidėja optinis atsparumas ir femtosekundinei lazerinei spinduliuotei. Taip pat eksperimentiškai buvo nustatyti įvairių dangų, dengtų jonapluoščio dulkinimo, elektronpluoščio nusodinimo su papildomu jonų tankinimu ir be jo technologijomis, pažeidimo slenksčiai įvairios trukmės ir įvairių bangos ilgių femtosekundiniams impulsams. Teoriškai išnagrinėtas vadinamojo S-į-1 pažeidimo tikimybės matavimo atvejis, kai lazerinės spinduliuotės erdviniai ir energetiniai... [toliau žr. visą tekstą] / The present Ph.D. thesis is the experimental and theoretical analysis of the femtosecond laser pulse induced damage processes in thin film dielectric coatings. Experimental investigations were performed by automated metrological facility designed for S-on-1 laser-induced damage threshold measurements. Femtosecond repetitive pulses (1 kHz) either at fixed 800 nm and 400 nm wavelengths or continuously tunable in 590 nm to 750 nm spectral range were used. The sensitivity of assembled metrological facility was sufficient to determine the influence of various deposition factors (process parameters and coating materials) on LIDT of optical coatings. Our experimental investigations on multi-layer ZrO2/SiO2, HfO2/SiO2, Ta2O5/SiO2, TiO2/SiO2 high reflection coatings and single-layer TiO2 have yielded several important results. To summarize: stepwise change of LIDT values was experimentally observed at the wavelength where two-photon absorption changes to three-photon absorption. This confirms that multiphoton absorption is one of the main damage mechanisms in femtosecond range. The multilayer coatings deposited by IAD and e-beam techniques on substrates having roughness of 0.64 nm or smaller showed similar LIDT values. Moreover, it was also confirmed that suppressing of standing wave electric field intensity at the outer layers of high refractive index improves the optical resistance of high reflectivity coatings also for femtosecond pulses. Furthermore, the model of the... [to full text]
607

Optical resistance of dielectric coatings to multi-pulse femtosecond laser radiation / Dielektrinių dangų optinis atsparumas pasikartojantiems femtosekundiniams lazerio impulsams

Melninkaitis, Andrius 08 April 2009 (has links)
The present Ph.D. thesis is the experimental and theoretical analysis of the femtosecond laser pulse induced damage processes in thin film dielectric coatings. Experimental investigations were performed by automated metrological facility designed for S-on-1 laser-induced damage threshold measurements. Femtosecond repetitive pulses (1 kHz) either at fixed 800 nm and 400 nm wavelengths or continuously tunable in 590 nm to 750 nm spectral range were used. The sensitivity of assembled metrological facility was sufficient to determine the influence of various deposition factors (process parameters and coating materials) on LIDT of optical coatings. Our experimental investigations on multi-layer ZrO2/SiO2, HfO2/SiO2, Ta2O5/SiO2, TiO2/SiO2 high reflection coatings and single-layer TiO2 have yielded several important results. To summarize: stepwise change of LIDT values was experimentally observed at the wavelength where two-photon absorption changes to three-photon absorption. This confirms that multiphoton absorption is one of the main damage mechanisms in femtosecond range. The multilayer coatings deposited by IAD and e-beam techniques on substrates having roughness of 0.64 nm or smaller showed similar LIDT values. Moreover, it was also confirmed that suppressing of standing wave electric field intensity at the outer layers of high refractive index improves the optical resistance of high reflectivity coatings also for femtosecond pulses. Furthermore, the model of the... [to full text] / Pagrindinis šio darbo tikslas - eksperimentiškai ir teoriškai išnagrinėti fundamentinius bei technologinius veiksnius, apribojančius dielektrinių dangų optinį atsparumą pasikartojantiems femtosekundinės trukmės lazerio impulsams. Specialiai šiems tyrimams atlikti buvo sukurta automatizuota eksperimentinė įranga, kuri pagreitino pažeidimo slenksčio matavimus ir minimizavo žmogiškąjį faktorių. Darbo metu eksperimentiškai buvo tiriamos tiek vienasluoksnės TiO2, tiek ir didelio atspindžio koeficiento daugiasluoksnės ZrO2/SiO2, HfO2/SiO2, Ta2O5/SiO2 bei TiO2/SiO2 dangos, padengtos skirtingais būdais. Pirmą kartą eksperimentiškai pademonstruota, kad dėl daugiafotonės sugerties įtakos dielektrinių dangų pažeidimo slenkstis, tolydžiai keičiant femtosekundinių impulsų bangos ilgį, kinta šuoliškai. Kartu pademonstruotos ir teorinės šio rezultato prielaidos. Eksperimentiškai pademonstruota, kad didelio atspindžio koeficiento dangose stovinčiosios elektromagnetinės bangos pūpsnius „perstūmus“ į žemesnio lūžio rodiklio sluoksnius padidėja optinis atsparumas ir femtosekundinei lazerinei spinduliuotei. Taip pat eksperimentiškai buvo nustatyti įvairių dangų, dengtų jonapluoščio dulkinimo, elektronpluoščio nusodinimo su papildomu jonų tankinimu ir be jo technologijomis, pažeidimo slenksčiai įvairios trukmės ir įvairių bangos ilgių femtosekundiniams impulsams. Teoriškai išnagrinėtas vadinamojo S-į-1 pažeidimo tikimybės matavimo atvejis, kai lazerinės spinduliuotės erdviniai ir energetiniai... [toliau žr. visą tekstą]
608

Synthesis and characterization of new organic electrically conducting polymers : part II: Direct carboxylation of sulfolene : part III: Effect of water on PTC systems : part IV: Mechanism of Phase transfer catalytic N-alkylation reactions

Berkner, Joachim Ernst 12 1900 (has links)
No description available.
609

Integrated dual frequency permittivity analyzer using cavity perturbation concept

Meda, Venkatesh. January 2002 (has links)
Optimal utilization of microwave energy requires more basic knowledge of the dielectric properties of the material under investigation. The dielectric properties of materials subjected to microwaves are known to depend on moisture content, temperature and density of the material as well as the frequency of the applied microwave field. This thesis is focussed on the development and evaluation of the new Permittivity Analyser to measure the dielectric properties of agri-food materials at 915 and 2450 MHz using cavity perturbation concept. / In this study, the dielectric properties measuring system was designed and developed using cavity perturbation concept to measure the essential and fundamental parameters of microwave-material interaction; dielectric constant and dielectric loss factor of selected agri-food substances and organic solvents. The TM010 mode of electromagnetic energy was selected and configured to operate at the peakresonant condition for both ISM (Industrial, Scientific and Medical) approved frequencies of .915 and 2450 MHz frequencies. The resonant perturbation cavities were designed, fabricated and tested using the network analyser and the permittivity analyser. High Q (ratio of energy supplied to absorbed) values were reported for both frequencies. Basic calibration of the measurement system was performed using standard media such as air, water and alcohol. Necessary mathematical steps and algorithms were written and integrated into a user-friendly software program (Visual basic 6.0) to carry out the entire measurement. / The dielectric properties (epsilon' & epsilon &Prime;) of materials such as; edible oils---canola, soya and sunflower oils, neem oil/pulp, homogenized milk (1, 2 and 3.25% fat), organic solvents such as ethanol, hexane and their mixtures were determined at various temperatures and frequency (915, 2450 MHz) combinations, using cavity perturbation technique. Linear relationships between the dielectric properties and temperature found in the literature were confirmed to be valid for certain ranges in case of edible oils, organic solvents and milk samples tested with the cavity perturbation method. Repeatibility and variability aspects of the permittivity analyzer at both the frequencies are presented.
610

Silicon carbide RF-MEM resonators

Dusatko, Tomas A. January 2006 (has links)
A low-temperature (<300°C) method to fabricate electrostatically actuated microelectromechanical (MEM) clamped-clamped beam resonators has been developed. It utilizes an amorphous silicon carbide (SiC) structural layer and a thin polyimide spacer. The resonator beam is constructed by DC sputtering a tri-layer composite of low-stress SiC and aluminum over the thin polyimide sacrificial layer, and is then released using a microwave O 2 plasma etch. Deposition parameters have been optimized to yield low-stress films (<50MPa), in order to minimize the chance of stress-induced buckling or fracture in both the SiC and aluminum. Characterization of the deposited SiC was performed using several different techniques including scanning electron microscopy, EDX and XRD. / Several different clamped-clamped beam resonator designs were successfully fabricated and tested using a custom built vacuum system, with measured frequencies ranging from 5MHz to 25MHz. A novel thermal tuning method is also demonstrated, using integrated heaters directly on the resonant structure to exploit the temperature dependence of the Young's modulus and thermally induced stresses.

Page generated in 0.041 seconds