• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 654
  • 155
  • 138
  • 104
  • 79
  • 22
  • 18
  • 18
  • 15
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • Tagged with
  • 1502
  • 198
  • 195
  • 182
  • 173
  • 160
  • 141
  • 138
  • 136
  • 119
  • 108
  • 107
  • 101
  • 97
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Scanning Fabry-perot Spectrometer For Terahertz And Gigahertz Spectroscopy Using Dielectric Bragg Mirrors

Cleary, Justin 01 January 2007 (has links)
A scanning Fabry-Perot transmission filter composed of a pair of dielectric mirrors has been demonstrated at millimeter and sub-millimeter wavelengths. The mirrors are formed by alternating quarter-wave optical thicknesses of silicon and air in the usual Bragg configuration. Detailed theoretical considerations are presented for determining the optimum design including factors that affect achievable finesse. Fundamental loss by lattice and free carrier absorption are considered. High resistivity in the silicon layers was found important for achieving high transmittance and finesse, especially at the longer wavelengths. Also considered are technological factors such as surface roughness, bowing, and misalignment for various proposed manufacturing schemes. Characterization was performed at sub-mm wavelengths using a gas laser together with a Golay cell detector and at millimeter wavelengths using a backward wave oscillator and microwave power meter. A finesse value of 422 for a scanning Fabry-Perot cavity composed of three-period Bragg mirrors was experimentally demonstrated. Finesse values of several thousand are considered to be within reach. This suggests the possibility of a compact terahertz Fabry-Perot spectrometer that can operate in low resonance order to realize high free spectral range while simultaneously achieving a high spectral resolution. Such a device is directly suitable for airborne/satellite and man-portable sensing instrumentation.
752

Application of Alternative Technologies to Eliminate <i>Vibrios </i> spp. in Raw Oysters

Hu, Xiaopei 07 January 2005 (has links)
High pressure processing (HPP) and gamma irradiation were applied to inactivate <i>Vibrio vulnificus</i> (MO624) and <i>Vibrio parahaemolyticus</i> (O3:K6 TX2103) in pure culture and in inoculated live oysters. <i>Vibrio</i> pure culture and inoculated oysters were exposed to pressures of 207 MPa (30 kpsi) to 552 MPa (80 kpsi) for 0 min to maximum of 20 min. More than 5.4 log reductions of <i>V. vulnificus</i> occurred at 345 MPa for 0 min in oysters; 345 MPa for 2 min can achieve 4 log reductions on <i>V. parahaemolyticus</i>. Dosage of 1 kGy gamma-irradiation was proved to be effective in producing <i>Vibrio</i> free oysters with comparable organoleptic quality to raw oysters. Thermal conductivity of shucked oysters was measured to be 0.58 to 0.68 W/m°C, as temperature increased from 0 to 50 °C, using a line heat source probe. The specific heat was measured by differential scanning calorimeter methods. It increased from 3.80 to 4.05 kJ/kg °C, when temperature rose from 10 to 50 °C. The thermal diffusivity was calculated employing the data of thermal conductivity, specific heat and density of shucked oysters. The results showed that, under the tested temperature range, thermal properties did not change significantly with temperature. The dielectric constant and loss factor of oysters were determined by an open-ended coaxial line probe connected to a network analyzer at frequency of 30 MHz to 3000 MHz from 1 to 55 °C. The penetration depth of dielectric heating was calculated to be 1.1 cm with the dielectric constant of 55 and loss factor of 14. A two-dimensional mathematical model was established to simulate the heat transfer of microwave heating using a fish gel. Finite difference method was utilized to solve partial differential heat transfer equations. The model was able to predict the temperature distribution in heated fish gel with an accuracy of ± 8°C. Applying the developed mathematical model, the lethality of <i>Vibrio</i> spp., artificially inoculated in live oysters, was estimated collectively by integrating the individual localized lethality of designated heating units. The predicted lethality was compared with microwave enumeration data on Vibrios in oysters. The observed maximum log reductions by microbial enumeration were 4.4 and 3.4 for <i>V. vulnificus</i> and <i>V. parahaemolyticus</i>, respectively. The lethality calculated by integrating temperature profiles was acceptable. The discrepancy between the estimated lethality and microbial test was attributed to the simplified model construction. The quality of processed oysters, including color, aroma and texture properties, was evaluated instrumentally by a digital image system, an electronic nose and universal testing machine. The performance of two electronic nose systems on their abilities to detect oyster aroma and classify the aroma data into distinct groups was evaluated using a trained sensory panel and microbial tests. Cyranose 320 system has demonstrated potential as a quality assessment tool due to its sound correlation with microbial quality data and sensory evaluation scores. According to the quality measurement results, high pressure processing conditions were recommended to be at 345 MPa for less than 3 min and 379 MPa for less than 1.5 min. Deterioration of the quality was distinct for oyster meats exposed to 60 °C or above by thermal processing. The critical thermal processing condition was identified to be 55 °C for 2 min. With careful control, microwave processing could be considered as a candidate for seafood processing to reduce potential bacterial hazard but still retain the quality of the product. / Ph. D.
753

Multi-Physics Model of a Dielectric Barrier Discharge Flow Control Actuator with Experimental Support

Schneck, William Carl III 04 April 2016 (has links)
This dissertation presents an experimentally supported multi-physics model of a dielectric barrier discharge boundary layer flow control actuator. The model is independent of empirical data about the specific behavior of the system. This model contributes to the understanding of the specific mechanisms that enable the actuator to induce flow control. The multi-physics numerical model couples a fluid model, a chemistry model, and an electrostatics model. The chemistry model has been experimentally validated against known spectroscopic techniques, and the fluid model has been experimentally validated against the time-resolved shadowgraphy. The model demonstrates the capability to replicate emergent flow structures near a wall. These structures contribute to momentum transport that enhance the boundary layer’s wall attachment and provide for better flow control. An experiment was designed to validate the model predictions. The spectroscopic results confirmed the model predictions of an electron temperature of 0.282eV and an electron number density of 65.5 × 10⁻¹²kmol/m³ matching to within a relative error of 12.4% and 14.8%, respectively. The shadowgraphic results also confirmed the model predicted velocities of flow structures of 3.75m/s with a relative error of 10.9%. The distribution of results from both experimental and model velocity calculations strongly overlap each other. This validated model provides new and useful information on the effect of Dielectric Barrier Discharge actuators on flow control and performance. This work was supported in part by NSF grant CNS-0960081 and the HokieSpeed supercomputer at Virginia Tech. / Ph. D.
754

Silicon-based 0.450-0.475 THz series-fed double dielectric resonator on-chip antenna array based on metamaterial properties for integrated-circuits

Alibakhshikenari, M., Virdee, B.S., See, C.H., Abd-Alhameed, Raed, Falcone, F., Limiti, E. 14 November 2019 (has links)
Yes / The antenna array designed to operate over 0.450-0.475 Terahertz comprises two dielectric resonators (DRs) that are stacked vertically on top of each other and placed on the surface of the slot antenna fabricated on a silicon substrate using standard CMOS technology. The slot created in the silicon substrate is meandering and is surrounded by metallic via-wall to prevent energy dissipation. The antenna has a maximum gain of 4.5dBi and radiation efficiency of 45.7% at 0.4625 THz. The combination of slot and vias transform the antenna to a metamaterial structure that provides a relatively small antenna footprint. The proposed series-fed double DRs on-chip antenna array is useful for applications in THz integrated circuits. / Partially supported by innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424 and the financial support from the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E0/22936/1.
755

SYNTHESIS AND OPTICAL PROPERTIES OF ULTRAFINE METAL NANOPARTICLES ON DIELECTRIC ANTENNA PARTICLES

Wei, Qilin, 0000-0003-1729-1951 January 2022 (has links)
Effective light energy conversion into other forms of energy in metal and metal compound nanoparticles has been of great interest in past decades. Being illuminated by incident light, electrons in the nanoparticles can be excited to higher energy states followed by deposition of energy into other molecules around their surface and the lattices in the following relaxation process. Ultrafine nanoparticles are thus preferred in these processes due to their high specific surface areas. Moreover, the portion of excited electrons with higher energies is higher in smaller nanoparticles than in larger ones. However, the overall light power absorbed by nanoparticles is proportional to the square of particle size, which causes the ultrafine nanoparticles not to efficiently absorb the incident light, or to drive further chemical or physical processes.Light antennae materials are usually employed to enhance the light absorption of these ultrafine nanoparticles. Plasmonic nanoparticles, e.g., Ag, Au, Cu, and Al nanoparticles, enhance the light absorption of loaded nanoparticles mainly through strong electromagnetic fields generated near their surfaces and have been proven to be effective light antennae to benefit the light energy conversion of ultrafine nanoparticles. On the other hand, spherical dielectric particles, e.g., silicon dioxide nanospheres, represent a different type of light antennae with the advantages of low cost, simple synthesis, and negligible Ohmic loss when being illuminated. When the sizes of high geometric symmetry dielectric nanospheres are comparable with the wavelength of the incident light, Mie scattering can happen based on the difference in refractive index between the sphere and the surrounding medium, generating size-dependent scattering resonances at various wavelengths. At these wavelengths, strong electric fields can be created on the surface of dielectric spheres to enhance the light absorption of the nanoparticles loaded on the surface. Previous works have shown that silica nanospheres with a diameter of several hundreds of nanometers can effectively enhance the light absorption of ultrafine Pt nanoparticles and benefit photocatalytic reactions, e.g., selective oxidation of benzyl alcohol. Over the past few years, this concept has been broadened to other ultrafine nanoparticles to study their novel photo-to-chemical/physical properties. However, the availability and comprehensive understanding of the optical properties of this class of composite particles still need to be improved. These challenges limit the further development of these composite materials in new light energy conversion processes. This dissertation aims at studying this class of novel ultrafine nanoparticles/dielectric sphere composite particles synthesis and optical properties. In Chapter 2, a synthesis protocol of ultrafine ruthenium oxyhydroxide nanoparticles on the surface of silica nanospheres’ surfaces is introduced. Unlike the traditional synthesis of nanoparticles in solution followed by a loading process, the method developed in this chapter only requires the injection of aqueous ruthenium salt solution into a silica nanosphere dispersion. The obtained ultrafine nanoparticles with sizes of 2-3 nm are characterized to be ruthenium oxyhydroxide (RuOOH) nanoparticles. The silica nanospheres are crucial in stabilizing these ultrafine RuOOH nanoparticles and enhancing their light absorption. Due to the presence of ruthenium-oxygen bonds in the nanoparticles, the absorbed photons are converted to heat and transferred to the surrounding media with a photo-to-thermal conversion efficiency close to the unity. Experimental results have shown that heat can be effectively used in accelerating the reaction rate of selective oxidation of benzyl alcohol by molecular oxygen. Kinetics data also have shown that these ultrafine RuOOH nanoparticles are able to activate molecular oxygen adsorbed on their surfaces, which represents a novel property of these ultrafine RuOOH nanoparticles that is not observed in other traditional ruthenium catalysts. In Chapter 3, a more general synthesis method of ultrafine metal and metal oxyhydroxide nanoparticles on silica nanospheres is developed, inspired by the synthetic route in Chapter 2. Instead of functionalizing silica surfaces with silane agents with amino groups, the silica surfaces are selectively etched by an aqueous base to create a high density of surface hydroxyl groups. These hydroxyl groups can provide basic sites to stabilize metal ions in aqueous dispersion, which are nuclei for the further growth of larger metal oxyhydroxide nanoparticles. In this chapter, more than ten kinds of metal ions are loaded onto silica spheres, forming oxyhydroxide nanoparticles with average sizes below 5 nm. Some oxyhydroxide nanoparticles can be reduced by 5% H2/N2 to form metal nanoparticles with their ultrafine sizes maintained. The synthesis protocol is promising in preparation of bimetallic samples. The composition and optical absorption of all obtained composite particles are analyzed, demonstrating the practicability of utilizing the reported method to prepare high-quality light-absorbing composite particles. In Chapter 4, the optical absorption property of the composite particle is systematically studied. Using ultrafine Pt nanoparticles as the light absorbing material, the light absorptions of composite particles consisting of silica spheres with diameters from 100 to 1100 nm loaded with these Pt nanoparticles are studied. Through the combination of theoretical calculation based on Mie theory and the measured optical absorption spectra, the scattering resonance peaks are successfully located in each sample. It is also found that the photonic crystal effect and the general absorption of Pt nanoparticles can contribute to the light absorption spectra, especially at higher wavelengths. The relationship between the general absorption of Pt nanoparticles and the packing density of the powder is further studied. The successful deconvolution of several components in the absorption spectra can guide the further rational design of composite particles in optical-related applications. In Chapter 5, the composite particle system is further broadened to using high refractive index zinc sulfide nanospheres as a light antenna. The use of a higher refractive index light antenna is promising for obtaining higher light absorption enhancement in loaded ultrafine nanoparticles, even though the sample is dispersed in organic media with a high refractive index as well. After the successful loading of Pt nanoparticles to the surface of silica-coated zinc sulfide nanospheres, a protocol for analyzing their light absorption spectra in organic media is proposed. Size-dependent scattering resonance peaks are observed in bare zinc sulfide nanospheres and can be utilized to enhance the light absorption of Pt nanoparticles, even when the sample is sealed in high refractive index polymeric matrices. The composite particles are further employed in photothermal tests, the results prove that the better light absorption enhancement using zinc sulfide than silica nanospheres. The results introduced in this dissertation represent the first systematic and comprehensive study of ultrafine metal and metal oxyhydroxide nanoparticles loaded on the surface of dielectric light antenna particles. The conclusions open an avenue to further rational design of high-performance light-absorbing composite particles to be used in photo-to-thermal/chemical processes. / Chemistry
756

Relaxation Behavior and Electrical Properties of Polyimide/Graphene Nanocomposite

Marashdeh, Wajeeh 22 October 2020 (has links)
No description available.
757

Исследование методов измерения электродинамических параметров диэлектрических материалов : магистерская диссертация / The study of methods for measurement of electrodynamic parameters of dielectric materials

Малкин, А. И., Malkin, A. I. January 2015 (has links)
Целью данной работы является исследование методов определения электродинамических параметров диэлектрических материалов. В ходе выполнения работы были рассмотрены основные методы измерения в области высоких, сверхвысоких и крайне высоких частот, а также реализованные измерительные комплексы, предлагаемые ведущими производителями измерительного оборудования. В результате выполненной работы был выбран и реализован метод измерения параметров диэлектрических материалов, разработано программное обеспечение, необходимое для реализации измерительного комплекса. По результатам работы были проведены практические измерения и сделаны выводы о применимости разработанного измерительного комплекса. Актуальность работы объясняется необходимостью использования значений электродинамических параметров диэлектрика при разработке электронных устройств. / Were investigated different methods of define electrodynamic properties of dielectric materials. During this work was illuminated main methods of material properties measurements in RF domain. Was developed program for measurement a permittivity of material using a waveguide and an air line using vector network analyzer. The results of this work were define permittivity of different materials and analysis those results with errors explanation.
758

INCORPORATION OF BIO-BASED MOLECULES IN SILICONES THROUGH MICHAEL ADDITIONS

Lu, Guanhua 24 November 2023 (has links)
Silicone stands as an indispensable material for numerous applications; however, its high energy-cost synthesis poses significant environmental challenges. To address these concerns, bio-based silicone has gained considerable attention, showcasing its potential to dilute energy density while offering inherent functional benefits. Despite promising prospects, existing incorporation methods often involve protecting groups, rare metal catalysts, and multistep synthesis, which contradict green chemistry principles. The aza- Michael reaction emerges as a superior choice due to its high atom economy and mild reaction conditions. However, it still suffers from prolonged reaction times, hindering its overall efficiency and sustainability. This thesis utilizes self-activated beta-hydroxy acrylates to greatly enhance aza-Michael kinetics, achieving a 3-fold rate enhancement in solvent-free silicone synthesis. This fast aza-Michael reaction acts as the platform for the incorporation of Vitamin C and amino acids into silicone materials. Vitamin C-modified silicone demonstrates the potential for controlled antioxidant activity release, while amino acid-functionalized silicones are synthesized using choline amino acid ionic liquids, presenting a protecting-group-free and solvent-free synthesis method. Moreover, the synthesized choline amino acid-functional polymers and elastomers are investigated for their dielectric properties revealing promising potential for dielectric elastomer actuator applications. These innovative methods offer green alternatives for incorporating hydrophilic biomolecules into hydrophobic silicone systems, providing new functionalities that address both environmental and functional requirements. / Thesis / Doctor of Science (PhD)
759

Wideband Dielectric Resonator Antenna Array for Autonomous Vehicles

Johansson, Andreas, Müller, Luke January 2023 (has links)
With the rapid advancement of autonomous vehicles, reliable and efficient wireless communication systems with high data rates have become essential for their safe and efficient operation and further evolution. High data rates are found in the higher frequency bands where conductive antennas lack radiation efficiency. To achieve high radiation efficiency, researchers tend towards using Circular Polarized Dielectric Resonator Antennas (CP-DRA). However, there is a lack of studies that cover the FR2 5G bands n257, n258, n261 suggested by 3GPP which is needed if vehicles were to drive across regional borders. This project addresses the challenges of achieving suitable CP-DRA performance for autonomous vehicle communication aimed at covering these FR2 5G bands. The objective is to design and simulate an optimized CP-DRA antenna that meets the required performance characteristics for further use in a phased array for efficient communication in the high-frequency FR2 5G bands. The objective was fulfilled by producing a model of a CP-DRA antenna that covers the mentioned FR2 5G bands. The antenna array achieves this with an axial ratio beam width at plus/minus 20 degrees azimuth angle and peak gain of 9-12 dBi throughout the frequency range. The model consists of four cylindrical resonator antenna elements excited in phase quadrature by a slot aperture feeding network to accomplish the circular polarization. The radiation efficiency of the model is 94% throughout the frequency range with an impedance bandwidth of &lt; -15 dB. A prototype was built and tested that vaguely verified the beam pattern and center frequency. Future work includes building a prototype more comparable to the model for further verification of the circularly polarized gain pattern.
760

Characterization of monkey fat tissues : To assist their viability for fat intra-body communication as an early step of non-human primate testing (NHP)

Alyounes, Qsai, Razan, Alkari January 2022 (has links)
Fat intra-body communication is a newly proven concept that is built on using human fat tissues as a communication channel for electromagnetic waves inside the body. This allows for two implanted external devices to connect through an intra-body closed-loop communication channel. This concept utilizes the fact that the fat tissues have low dielectric properties and are located between two tissue layers, skin and muscle, which have high dielectric permittivity and high loss tangent so that the signal propagates and confines with lower losses within the fat tissue. In this study, the eligibility of using monkey fat tissues as a communication channel for intra-body communication is being investigated. This comes as a first step in a long process of testing implementing medical devices, mainly prosthetic limbs, on non-human primates using fat-IBC at microwave frequencies. To be able to do that, an experimental characterization of ex-vivo monkey fat, skin, and muscle tissues to explore their dielectric properties compared to those of humans is being carried out. This study of the dielectric properties of monkey tissues is the first of its kind to be carried out on two samples of ex-vivo monkey tissues. Calf tissues have also been investigated in the study to get an insight on the potential differences between human and non-human body tissues in general before doing measurements on monkey tissues. For the measurements, an RF network analyzer and an open-ended coaxial probe method have been implemented. Phantoms that mimic the human tissues have been fabricated to be used as a reference point. The initial investigation demonstrates that calf fat tissues have much higher dielectric properties than human fat tissues. Monkey fat, muscle, and skin tissues showed many similarities to human tissues regarding their dielectric properties. This indicates that monkey tissues can be used for fat intra-body communication. Future numerical and analytical modeling of the monkey tissues needs to be conducted to confirm and strengthen this finding.

Page generated in 0.0829 seconds