1 |
Lower Semicontinuity and Young Measures for Integral Functionals with Linear GrowthJohan Filip Rindler, Johan Filip January 2011 (has links)
No description available.
|
2 |
Materials Science-inspired problems in the Calculus of Variations: Rigidity of shape memory alloys and multi-phase mean curvature flowSimon, Thilo Martin 02 October 2018 (has links)
This thesis is concerned with two problems in the Calculus of Variations touching on two central aspects of Materials Science: the structure of solid matter and its dynamic behavior.
The problem pertaining to the first aspect is the analysis of the rigidity properties of possibly branched microstructures formed by shape memory alloys undergoing cubic-to-tetragonal transformations. On the basis of a variational model in the framework of linearized elasticity, we derive a non-convex and non-discrete valued differential inclusion describing the local volume fractions of such structures. Our main result shows the inclusion to be rigid without additional regularity assumptions and provides a list of all possible solutions. We give constructions ensuring that the various types of solutions indeed arise from the variational model and quantitatively describe their rigidity via H-measures.
Our contribution to the second aspect is a conditional result on the convergence of the Allen-Cahn Equations to multi-phase mean curvature flow, which is a popular model for grain growth in polychrystalline metals. The proof relies on the gradient flow structure of both models and borrows ideas from certain convergence proofs for minimizing movement schemes.:1 Introduction
1.1 Shape memory alloys
1.2 Multi-phase mean curvature flow
2 Branching microstructures in shape memory alloys: Rigidity due to macroscopic compatibility
2.1 The main rigidity theorem
2.2 Outline of the proof
2.3 Proofs
3 Branching microstructures in shape memory alloys: Constructions
3.1 Outline and setup
3.2 Branching in two linearly independent directions
3.3 Combining all mechanisms for varying the volume fractions
4 Branching microstructures in shape memory alloys: Quantitative aspects via H-measures
4.1 Preliminary considerations
4.2 Structure of the H-measures
4.3 The transport property and accuracy of the approximation
4.4 Applications of the transport property
5 Convergence of the Allen-Cahn Equation to multi-phase mean curvature flow
5.1 Main results
5.2 Compactness
5.3 Convergence
5.4 Forces and volume constraints
|
3 |
Inclusions différentielles d'évolution associées à des ensembles sous-lisses / Evolution differential inclusions associated with subsmooth setsNoel, Jimmy 23 May 2013 (has links)
Cette thèse est consacrée à l'étude d'existence de solutions pour certains problèmes d'évolution. Il s'agit de processus de rafle perturbés associés d'une part à des ensembles prox-réguliers et d'autre part à des ensembles sous-lisses. Les ensembles sont supposés évoluer de façon lipschitzienne ou absolument continue. / This dissertation is devoted to the study of the existence of solutions for some evolution problems. The study is concerned with perturbed sweeping processes associated on the one hand with prox-regular sets and the other hand with subsmooth sets. It is assumed that the sets move either in a Lipschitz way or in an absolutely continuous way.
|
4 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links) (PDF)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
5 |
Finite dimensional stochastic differential inclusionsBauwe, Anne, Grecksch, Wilfried 16 May 2008 (has links)
This paper offers an existence result for finite dimensional stochastic differential
inclusions with maximal monotone drift and diffusion terms. Kravets studied only
set-valued drifts in [5], whereas Motyl [4] additionally observed set-valued diffusions
in an infinite dimensional context.
In the proof we make use of the Yosida approximation of maximal monotone operators
to achieve stochastic differential equations which are solvable by a theorem
of Krylov and Rozovskij [7]. The selection property is verified with certain properties
of the considered set-valued maps. Concerning Lipschitz continuous set-valued
diffusion terms, uniqueness holds. At last two examples for application are given.
|
6 |
Nonlinear Analysis and Control of Standalone, Parallel DC-DC, and Parallel Multi-Phase PWM ConvertersMazumder, Sudip K. 17 August 2001 (has links)
Applications of distributed-power systems are on the rise. They are already used in telecommunication power supplies, aircraft and shipboard power-distribution systems, motor drives, plasma applications, and they are being considered for numerous other applications. The successful operation of these multi-converter systems relies heavily on a stable design. Conventional analyses of power converters are based on averaged models, which ignore the fast-scale instability and analyze the stability on a reduced-order manifold. As such, validity of the averaged models varies with the switching frequency even for the same topological structure.
The prevalent procedure for analyzing the stability of switching converters is based on linearized smooth averaged (small-signal) models. Yet there are systems (in active use) that yield a non-smooth averaged model. Even for systems for which smooth averaged models are realizable, small-signal analyses of the nominal solution/orbit do not provide anything about three important characteristics: region of attraction of the nominal solution, dependence of the converter dynamics on the initial conditions of the states, and the post-instability dynamics. As such, converters designed based on small-signal analyses may be conservative. In addition, linear controllers based on such analysis may not be robust and optimal. Clearly, there is a need to analyze the stability of power converters from a different perspective and design nonlinear controllers for such hybrid systems.
In this Dissertation, using bifurcation analysis and Lyapunov's method, we analyze the stability and dynamics of some of the building blocks of distributed-power systems, namely standalone, integrated, and parallel converters. Using analytical and experimental results, we show some of the differences between the conventional and new approaches for stability analyses of switching converters and demonstrate the shortcomings of some of the existing results. Furthermore, using nonlinear analyses we attempt to answer three fundamental questions: when does an instability occur, what is the mechanism of the instability, and what happens after the instability?
Subsequently, we develop nonlinear controllers to stabilize parallel dc-dc and parallel multi-phase converters. The proposed controllers for parallel dc-dc converters combine the concepts of multiple-sliding-surface and integral-variable-structure control. They are easy to design, robust, and have good transient and steady-state performances. Furthermore, they achieve a constant switching frequency within the boundary layer and hence can be operated in interleaving or synchronicity modes. The controllers developed for parallel multi-phase converters retain many of the above features. In addition, they do not require any communication between the modules; as such, they have high redundancy. One of these control schemes combines space-vector modulation and variable-structure control. It achieves constant switching frequency within the boundary layer and a good compromise between the transient and steady-state performances. / Ph. D.
|
7 |
Fixed point results for multivalued contractions on graphs and their applicationsDinevari, Toktam 06 1900 (has links)
Nous présentons dans cette thèse des théorèmes de point fixe pour des contractions
multivoques définies sur des espaces métriques, et, sur des espaces de jauges munis
d’un graphe. Nous illustrons également les applications de ces résultats à des
inclusions intégrales et à la théorie des fractales.
Cette thèse est composée de quatre articles qui sont présentés dans quatre
chapitres. Dans le chapitre 1, nous établissons des résultats de point fixe pour
des fonctions multivoques, appelées G-contractions faibles. Celles-ci envoient des
points connexes dans des points connexes et contractent la longueur des chemins.
Les ensembles de points fixes sont étudiés. La propriété d’invariance homotopique
d’existence d’un point fixe est également établie pour une famille de Gcontractions
multivoques faibles. Dans le chapitre 2, nous établissons l’existence
de solutions pour des systèmes d’inclusions intégrales de Hammerstein sous des
conditions de type de monotonie mixte. L’existence de solutions pour des systèmes
d’inclusions différentielles avec conditions initiales ou conditions aux limites
périodiques est également obtenue. Nos résultats s’appuient sur nos théorèmes
de point fixe pour des G-contractions multivoques faibles établis au chapitre 1. Dans le chapitre 3, nous appliquons ces mêmes résultats de point fixe aux systèmes
de fonctions itérées assujettis à un graphe orienté. Plus précisément, nous
construisons un espace métrique muni d’un graphe G et une G-contraction appropriés.
En utilisant les points fixes de cette G-contraction, nous obtenons plus
d’information sur les attracteurs de ces systèmes de fonctions itérées. Dans le
chapitre 4, nous considérons des contractions multivoques définies sur un espace
de jauges muni d’un graphe. Nous prouvons un résultat de point fixe pour des
fonctions multivoques qui envoient des points connexes dans des points connexes
et qui satisfont une condition de contraction généralisée. Ensuite, nous étudions
des systèmes infinis de fonctions itérées assujettis à un graphe orienté (H-IIFS).
Nous donnons des conditions assurant l’existence d’un attracteur unique à un
H-IIFS. Enfin, nous appliquons notre résultat de point fixe pour des contractions
multivoques définies sur un espace de jauges muni d’un graphe pour obtenir plus d’information sur l’attracteur d’un H-IIFS. Plus précisément, nous construisons
un espace de jauges muni d’un graphe G et une G-contraction appropriés tels que
ses points fixes sont des sous-attracteurs du H-IIFS. / In this thesis, we present fixed point theorems for multivalued contractions defined
on metric spaces, and, on gauge spaces endowed with directed graphs. We also
illustrate the applications of these results to integral inclusions and to the theory
of fractals. chapters. In Chapter 1, we establish fixed point results for the maps, called multivalued
weak G-contractions, which send connected points to connected points
and contract the length of paths. The fixed point sets are studied. The homotopical
invariance property of having a fixed point is also established for a
family of weak G-contractions. In Chapter 2, we establish the existence of solutions
of systems of Hammerstein integral inclusions under mixed monotonicity
type conditions. Existence of solutions to systems of differential inclusions with
initial value condition or periodic boundary value condition are also obtained.
Our results rely on our fixed point theorems for multivalued weak G-contractions
established in Chapter 1. In Chapter 3, those fixed point results for multivalued
G-contractions are applied to graph-directed iterated function systems. More
precisely, we construct a suitable metric space endowed with a graph G and an
appropriate G-contraction. Using the fixed points of this G-contraction, we obtain
more information on the attractors of graph-directed iterated function systems. In Chapter 4, we consider multivalued maps defined on a complete gauge space
endowed with a directed graph. We establish a fixed point result for maps which
send connected points into connected points and satisfy a generalized contraction
condition. Then, we study infinite graph-directed iterated function systems
(H-IIFS). We give conditions insuring the existence of a unique attractor to an
H-IIFS. Finally, we apply our fixed point result for multivalued contractions on
gauge spaces endowed with a graph to obtain more information on the attractor
of an H-IIFS. More precisely, we construct a suitable gauge space endowed with
a graph G and a suitable multivalued G-contraction such that its fixed points are
sub-attractors of the H-IIFS.
|
8 |
Some aspects on sweeping processes / Quelques résultats sur les processus de rafleLatreche, Wissam 10 July 2018 (has links)
Dans cette thèse, on s'intéresse à l'étude d'existence de solutions pour les processus de rafle. Ce problème prend la forme d'une inclusion différentielle contrainte avec des cônes normaux qui apparaissent naturellement dans nombreuses applications telles que le mouvement de foule, l'élastoplasticité, les mécaniques, les circuits électroniques, etc. L'objective de ce travail est de rapprocher deux importantes classes d'inclusions différentielles. D'une part, nous établissons quelques résultats d'existence de tube-solutions pour des processus de rafle à des ensembles uniformément prox-réguliers. D'autre part, nous présentons des résultats d'existence de solutions monotone par rapport à un préordre pour un système mixte d'inclusions différentielles projetées. De plus, nous montrons l'existence d'un point-selle pour notre système et nous fournissons deux exemples d'applications. / In this thesis, we were interested in the study of the existence of solutions for sweeping processes. This problem takes the form of a constrained differential inclusion involving normal cones which appears naturally in many applications such as crowd motion, elastoplasticity, mechanics, electrical circuit, etc.The aim of this work is to bring together two classes of differential inclusions. On one hand, we establish some existence results of solutions-tube for sweeping processes with uniformly prox-regular sets. On the other hand, we present existence results of monotone solutions with respect to a preorder for a mixed system of projected differential inclusions. In addition, we show that our system has a saddle-point and we provide two examples of applications.
|
9 |
Problèmes de contrôle optimal associés avec des inégalités variationnelles et différentielles variationnelles / Optimal control problems associated with variational inequalities and differential variational inequalitiesHechaichi, Hadjer 19 June 2019 (has links)
Les problèmes de contrôle optimal se rencontrent dans l'industrie aérospatiale et dans la mécanique. Leur étude conduit à des difficultés mathématiques importantes. Dans cette thèse, nous nous intéressons aux conditions d'optimalité pour certains problèmes de contrôle avec des contraintes exprimées en termes d'inclusions différentielles. Nous considérons aussi des problèmes de contrôle associés aux modèles mathématiques issus de la Mécanique du Contact. Cette thèse est structurée en deux parties et six chapitres. La première partie, contenant les Chapitres 1, 2 et 3, représente un résumé de nos résultats, en Français. Nous y présentons les problèmes étudiés, les hypothèses sur les données, les notations utilisées ainsi que l’énoncé des principaux résultats. Les démonstrations sont omises. La deuxième partie du manuscrit représente la partie principale de la thèse. Elle contient les Chapitres 4, 5 and 6, chacun ayant fait l'objet d'une publication (parue ou soumise) dans une revue internationale avec comité de lecture.Nous y présentons nos principaux résultats, accompagnés des démonstrations et des références bibliographiques. / Optimal control problems arise in aerospace industry and in mechanics. They are challenging and involve important mathematical difficulties. In this thesis, we are interested to derive optimality conditions for optimal control problems with constraints under the form of differential inclusions. We also consider optimal control problems in the study of some boundary value problems arising in Contact Mechanics. The thesis is structured in two parts and six chapters. Part I represents an abstract of the main results, in French. It contains Chapters 1, 2 and 3. Here we present the problems we study together with the assumptions on the data, the notation and the statement of the main results. The proofs of these results are omitted, since them are presented in Part II of the manuscript.Part II represents the main part of the thesis. It contains Chapters 4, 5 and 6. Each of these chapters made the object of a paper published (or submitted) in an international journal. Here we present our main results, together with the corresponding proofs and bibliographical references.
|
10 |
Projeto de controladores para o amortecimento de oscilações em sistemas elétricos com geração distribuída / Design of controllers to damp oscillations in electrical systems with distributed generationKuiava, Roman 04 March 2010 (has links)
Essa pesquisa se propõe a investigar o uso de Inclusões Diferenciais Lineares Limitadas por Norma (IDLNs) para projeto de controladores de amortecimento de tipo PSS (Power System Stabilizer) para sistemas elétricos com a presença de geração distribuída. Uma vez definida de maneira adequada, uma IDLN pode ser capaz de englobar um conjunto de trajetórias do modelo não-linear do sistema em estudo. Assim, é possível garantir certas propriedades (estabilidade assintótica, por exemplo) para as trajetórias da IDLN e, consequentemente, as mesmas propriedades terão validade para as trajetórias do modelo não-linear. Inicialmente propõe-se um procedimento para cálculo dos parâmetros do modelo de IDLN proposto de forma que ela seja capaz de agregar um conjunto de dinâmicas de interesse do sistema. Tal procedimento divide-se, basicamente, em duas etapas. Na primeira etapa, o objetivo é englobar um conjunto de trajetórias do modelo não-linear do sistema numa Inclusão Diferencial Linear Politópica (IDLP). Já na segunda etapa, os parâmetros da IDLN são calculados a partir da solução um problema na forma de LMIs (Linear Matrix Inequalities) que utiliza informações da IDLP obtida anteriormente. Em seguida, essa pesquisa propõe um procedimento sistemático na forma de LMIs para projeto de controladores de amortecimento de tipo PSS para sistemas de geração distribuída usando-se os modelos de IDLNs propostos. Restrições na forma de desigualdades matriciais são incluídas ao problema de controle para garantir um desempenho mínimo a ser atingido pelo controlador. Como resultado, a formulação do problema de controle é descrita por um conjunto de BMIs (Bilinear Matrix Inequalities). Entretanto, através de um procedimento de separação pode-se tratar o problema em duas etapas, ambas envolvendo a solução de um conjunto de LMIs. Uma planta de co-geração instalada numa rede de distribuição composta por um alimentador e 6 barras é utilizada como sistema teste. / This work proposes an investigation about the use of Norm-bounded Linear Differential Inclusions (NLDIs) for the design of PSS-type damping controllers for electrical systems with the presence of distributed generation. When the NLDI is properly defined, it is possible to guarantee certain properties (for example, asymptotic stability) to the trajectories of the NLDI and, consequently, the trajectories of the nonlinear model have these same properties. Initially, this research proposes a procedure to calculate the NLDI parameters in such way it can be capable to aggregate a set of dynamics of interest. Such procedure is constituted by two steps. In the first step, the objective is to aggregate some trajectories of the nonlinear model to a Politopic Linear Differential Inclusion (PLDI). In the second step, the NLDI parameters are calculated by solving a problem in the form of LMIs (Linear Matrix Inequalities) that uses the IDLP previously obtained. After that, this research proposes a systematic method based on LMIs for the design of PSS-type damping controllers for distributed generation systems. Such method uses the proposed NLDI models. Constraints in the form of LMIs are included to the control problem formulation in order to guarantee a desirable performance to the controller. As a result, the control problem formulation is structured by a set of BMIs (Bilinear Matrix Inequalities). However, it is possible to deal with such problem in two steps,both involving the solution of a set of LMIs. A cogeneration plant added to a distribution network constituted by a feeder and six buses is adopted as test system.
|
Page generated in 0.1272 seconds