• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 180
  • 176
  • 105
  • 43
  • 20
  • 15
  • 12
  • 7
  • 6
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 667
  • 94
  • 84
  • 75
  • 70
  • 60
  • 59
  • 58
  • 55
  • 53
  • 49
  • 46
  • 41
  • 40
  • 38
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Aplicabilidade do princípio da insignificância aos crimes que tutelam bens jurídicos difusos / Applicability of the insignificance principle to the crimes that protect the diffuse jurifical chattels

Adjair de Andrade Cintra 07 April 2011 (has links)
O trabalho foi desenvolvido para analisar a aplicabilidade do princípio da insignificância aos crimes que tutelam bens jurídicos difusos. O conceito de bem jurídico é o único elemento prévio à legislação com capacidade de limitar materialmente o poder punitivo estatal, sendo inaceitável o seu abandono, relativização ou flexibilização. O bem jurídico difuso é tutelado tendo em vista a proteção e o pleno desenvolvimento do ser humano, e suas características favorecem a tipificação de crimes de perigo abstrato e de crimes cumulativos, sendo inaceitáveis crimes de mera desobediência. O princípio da insignificância é uma ferramenta interpretativa do tipo penal e deve ser dividido em insignificância absoluta, hipótese em que a conduta sequer afeta o bem jurídico abstratamente considerado, apresentando uma ofensividade reduzidíssima e carecendo de tipicidade material; e insignificância relativa, hipótese em que se exclui a culpabilidade do agente no caso de ser diminuta a lesão ao bem jurídico individualizado e reduzidíssima a reprovabilidade do agente, devendo o fato ser considerado axiologicamente irrelevante, não havendo necessidade ou merecimento de pena. As lesões ao bem jurídico difuso atingem apenas indiretamente o indivíduo, ainda que socialmente tomado, e quando o reflexo da lesão ao bem jurídico difuso atingir o indivíduo (de hoje ou do futuro) de forma reduzida, deve ser ela considerada insignificante, sendo a insignificância relativa o instrumento mais compatível com a análise das condutas que se subsumem a crimes de perigo abstrato e a crimes cumulativos. / This work was developed to analyze the applicability of the insignificance principle to the crimes that protect the diffuse juridical chattels. The juridical chattel is the only element previews to the legislation capable of limiting the punishing power of the State, and it is unacceptable to abandon it, to relativize it or to loosen it. The diffuse juridical chattel is protected to preserve the human being and its full development, and its characteristics facilitate the creation of abstract danger crimes and cumulating crimes, but it is unacceptable crimes of mere disobedience. The insignificance principle is a interpretative tool for the criminal type and must be divided into absolute insignificance, which occurs when the action do not affect the juridical chattel abstractly considered, having a very reduced offensiveness, lacking of material typicality, and relative insignificance, which excludes the culpability when it entail a small damage to the juridical chattel individually taken, what makes this action axiologically irrelevant, and the punishment unnecessary and undeserved. The damages to the juridical chattel strike only indirectly the individual, even when socially taken, and when the reflex of the damage to the juridical chattel strikes the individual (of the present or of the future) in a reduced way, it must be considered insignificant, and the relative insignificance is the most compatible tool to analyze the insignificance of the action that may be considered an abstract danger crime or a cumulating crime.
52

Influence of sky conditions on carbon dioxide uptake by forests

Dengel, Sigrid January 2009 (has links)
Sky conditions play an important role in the Earth’s climate system, altering the solar radiation reaching the Earth’s surface and determining the fraction of incoming direct and diffuse radiation. Sky conditions dictate the radiation distribution inside plant canopies and also the carbon dioxide uptake by forests during the growing season. On the long term these diffuse conditions may have a positive influence on forest growth in Northern Britain during the last 50 years. We compared the quantity (amount) and quality (spectral distribution) of direct and diffuse radiation above, inside and below a forest stand under sunny, cloudy and overcast conditions in a thinned Sitka spruce [Picea sitchensis (Bong.) Carr.] forest (28 years, with an leaf area index (LAI) of around 5 m2m-2). Similar radiation properties (sky conditions) were used for analysis of light response and canopy conductance measurements in the same and also in a different spruce forest of the same species (33 years, LAI of around 7 m2 m-2) over the growing season 2008 in order to compare canopy activity under these conditions. In order to integrate short-term and longterm studies, we were looking at how far these conditions are influencing forest growth over several decades. To do so, we used freshly cut tree discs of Sitka spruce from a felled forest (planting year 1953) in southern Scotland and solar direct and diffuse radiation along with other meteorological data from the nearest meteorological station. Our analysis show that the amount and quality of solar radiation is distributed differently inside forest stands under various sky conditions, leading to an enhanced carbon dioxide uptake and canopy stomatal activity under diffuse cloudy and overcast conditions. Furthermore we demonstrated which factors have influenced diffuse radiation distribution over the past 50 years and how these are correlated with forest growth in southern Scotland.
53

The Study of Diffuse Soft X-Ray Background

Gupta, Anjali 15 May 2009 (has links)
The cosmic X-ray background was discovered at the dawn of the X-ray astronomy: during the first successful rocket flight launched to study the X-ray emission from the Moon, the presence of a residual diffuse emission was also "serendipitously" revealed. In the intervening decades, observations with improving angular and spectral resolution have enhanced our understanding of the components that make up this background. Above 1 keV, the emission is highly isotropic on large angular scales, has extragalactic origin, and about ~80 percent has been resolved into discrete sources (Mushotzky et al. 2000, Hasinger et al. 1998). Our current interpretation of the diffuse X-ray emission below 1 keV uses a combination of 5 components, solar wind charge exchange, Local Bubble, Galactic halo, intergalactic gas, and unresolved point sources. Resolving the different components is made particularly difficult by the similar spectral emission of most components, X-ray lines of heavily ionized metals, which are poorly resolved by the energy resolution of CCD cameras onboard current X-ray satellites with typical observing times. The goal of this investigation is to assess the integral emission of the major components of the diffuse Soft X-Ray Background. In the first part of my project, I analyzed the shadow observations performed with XMM-Newton and Suzaku X-ray observatories. Shadow observations offer a tool to separate the fore ground component, due to the Local Bubble and, possibly, charge exchange within the solar system, from the background component, due primarily to the Galactic Halo and unidentified point sources. In the second part of my project, I studied the contribution of unresolved point sources and intergalactic medium to the diffuse Soft X-ray Background.
54

Short-Wave Infrared Diffuse Reflectance of Textile Materials

Haran, Terence 17 November 2008 (has links)
This thesis analyzes the reflectance behavior of textiles in the short-wave infrared (SWIR) band (1 – 2 microns) in order to identify/design potential diagnostic tools that allow the remote detection of human presence in a scene. Analyzing the spectral response of fabrics in the SWIR band has gained significant interest in the remote sensing community since it provides a potential path to discriminate camouflaged clothing from backgrounds that appear similar to the object of interest in the visible band. Existing research, originating primarily from the textiles community, has thoroughly documented the behavior of clothing fabrics in the visible band. Other work has shown that the differences in spectral response in the SWIR band allows for discrimination of materials that otherwise have the same visible spectral response. This work expands on those efforts in order to quantify the reflectance behavior and to better understand the physical basis for that behavior.
55

Diffuse Reflectance Spectroscopy Characterization for Extraction of Tissue Physiological Parameters

Phelps, Janelle Elise January 2010 (has links)
<p>Variations in hemoglobin concentration can be indicative of a number of serious complications, including blood loss and anemia. Rapid, noninvasive measurements of hemoglobin are important in applications where blood status is reflective of patient well-being, such as in the emergency room, operating room, or the battlefield. Probe-based diffuse reflectance spectroscopy is capable of noninvasively quantifying tissue optical properties, including hemoglobin concentration. The quantification of hemoglobin concentration using optical methods is complicated by tissue scattering and the robustness of the algorithm and instrumentation used to interrogate the tissue. The sensing depth of diffuse reflectance spectroscopy can be tailored by the wavelengths of light and probe design used.</p><p>In this thesis, the accuracy and clinical viability of different diffuse reflectance spectroscopy implementations are presented. The robustness of an inverse Monte Carlo model, in which tissue optical properties are determined from measured reflectance using ultraviolet-visible (UV-VIS) wavelengths and a steady-state instrument, was tested using laboratory measurements. From the laboratory measurements, a set of references was identified which provided accurate absorption and scattering measurements, independent of the optical properties of the target. In addition, the ability to quantify hemoglobin concentration and saturation over large ranges and concentrations of multiple absorbers was established. </p><p>Following the laboratory measurements, a clinical study in which UV-VIS spectra were measured from the sublingual mucosa of patients undergoing surgeries was carried out. From this study, the correlations of extracted hemoglobin to expected blood hemoglobin were found to be improved when a simple ratiometric method based on isosbestic wavelengths of hemoglobin was used. During this study, the probe positioning in the mouth was found to be unwieldy, and so the transition to a more secure probe that could be taped to the hand was made. </p><p>In order to penetrate the overlying skin, near-infrared (NIR) wavelengths with a different probe geometry was explored. Further investigation of the inverse Monte Carlo model with NIR wavelengths was executed, and while in theory this combination should yield accurate optical property estimation, laboratory measurements indicated large errors, presumably due to the instrument or low magnitude and reduced spectral features of hemoglobin absorption in the NIR. Instead, the use of a well-established frequency-domain instrument coupled with diffusion approximation was implemented to measure spectra from the thenar eminence of volunteers undergoing induced hypovolemia and subsequent retransfusion. There were some moderate correlations with blood hemoglobin, but because both this method and the Monte Carlo method with mucosal probe placement showed higher variability with probe pressure than the isosbestic ratiometric method, further development of the ratiometric method was made. </p><p>The ratiometric method was developed using simulations and validated with phantoms and clinical data. Monte Carlo modeled reflectance was generated for a large range of biologically-relevant absorption and scattering values. The modeled reflectance was scaled by a calibration spectra obtained from a single laboratory phantom measurement so that linear regression equations relating hemoglobin concentration to ratios could be applied directly to clinical or laboratory measurements. Ratios which could best estimate hemoglobin concentration independent of saturation and scattering were determined through the simulation and laboratory measurements. Three isosbestic ratios - 545/390, 452/390, and 529/390 nm - were determined to best estimate hemoglobin concentration, and ratiometric-extracted hemoglobin was shown to correlate well to Monte Carlo-extracted hemoglobin in clinical measurements. Because only a single calibration measurement (which can be measured on a different day) is required per instrument and probe combination, this method can be implemented in near real-time and is thus appropriate for applications where hemoglobin concentration must be measured rapidly.</p> / Dissertation
56

Studies of magnetic and dielectric properties on Eu2O3 nanoparticles embedded in silica matrix

Chen, Ching-Hsuan 05 July 2010 (has links)
Magnetic nanocrystalline Eu2O3 (0.5 mol %) particles have been synthesized in a silica glass matrix by the sol-gel method at calcination temperatures of 700oC and above. X-ray and TEM studies reveal the nanocrystals with mean sizes in the range 4¡V8 nm, larger in the samples calcined at higher temperatures. The magnetization and magnetic hysteresis of Eu2O3 nanocrystals in the temperature range of 2-300K have demonstrated that the Eu2O3 nanocrystals in these glasses display superparamagnetic state. The temperature dependence of dielectric constant curves demonstrate a broad maximum around Tm ~ 270 K characteristic by diffuse phase transition (DPT). At the highest applied magnetic field 9 tesla, at superparamagnetic phase, the dielectric constant around Tm decreases almost ~ 1.5 (at 2.5 kHz) times compared with that at zero field for the sample calcined at 700¢J (~2 nm). The magnetodielectric effect observed in the glass composite is considered to be affected with the direct consequence of magnetoresistance changes which depends on the magnetic nanoparticle size and separation. Combustion mechanism is closely relate to the thermally activation oxygen vacancy. Such a material might be treated as a potential candidate for device miniaturization.
57

Monitoring damage in concrete using diffuse ultrasonic coda wave interferometry

Schurr, Dennis Patrick 30 August 2010 (has links)
The prevalence of concrete and cement-based materials in the civil infrastructure plus the risk of failure makes structural health monitoring an important issue in the understanding of the complete life cycle of civil structures. Correspondingly, the field of nondestructive evaluation (NDE) has been maturing and now concentrates on the detection of flaws and defects, as well as material damage in early stages of degradation. This defect detection is typically usually done by looking at the impulse response of the medium in question such as a cement-based material. The impulse response of a solid can be used to image a complex medium. Classically, the waveform is obtained by an active setup: an ultrasonic signal is generated at one location and recorded at another location. The waveform obtained from imaging can be used to quantitatively characterize the medium, for example by calculating the material's diffusivity coefficient or dissipation rate. In recent years, a different monitoring technique has been developed in seismology to measure the velocity of different kinds of waves, the Coda Wave Interferometry (CWI). In this CWI technique, the main focus is given to the late part of the recorded waveform, the coda. CWI is now successfully used in seismology and acoustics. In the current research, CWI is applied on concrete in different damage states to develop basic knowledge of the behavior of the wave velocity, and how it can be used to characterize cement-based materials. By comparing two impulse responses, the relative velocity change between the two impulse responses is used to characterize damage. Because of the stress-dependency of the velocity change, the calculations can also be used to directly calculate the Murnaghan's and Lam´e's coefficients. The newer technique of CWI is applied - the Stretching Technique (ST) [27]. The first goal of this research is to establish the viability of using CWI in cement-based materials. Next, we use the ST in the application of stress as we compress concrete samples for the detection of thermal damage, ASR-damage and mechanical softening.
58

Depth resolved diffuse reflectance spectroscopy

Hennessy, Richard J. 12 August 2015 (has links)
This dissertation focuses on the development of computational models and algorithms related to diffuse reflectance spectroscopy. Specifically, this work aims to advance diffuse reflectance spectroscopy to a technique that is capable of measuring depth dependent properties in tissue. First, we introduce the Monte Carlo lookup table (MCLUT) method for extracting optical properties from diffuse reflectance spectra. Next, we extend this method to a two-layer tissue geometry so that it can extract depth dependent properties in tissue. We then develop a computational model that relates photon sampling depth to optical properties and probe geometry. This model can be used to aid in design of application specific diffuse reflectance probes. In order to provide justification for using a two-layer model for extracting tissue properties, we show that the use of a one-layer model can lead to significant errors in the extracted optical properties. Lastly, we use our two-layer MCLUT model and a probe that was designed based on our sampling depth model to extract tissue properties from the skin of 80 subjects at 5 anatomical locations. The results agree with previously published values for skin properties and show that can diffuse reflectance spectroscopy can be used to measured depth dependent properties in tissue. / text
59

Simulations of interfacial dynamics of complex fluids using diffuse interface method with adaptive meshing

Zhou, Chunfeng 11 1900 (has links)
A diffuse-interface finite-element method has been applied to simulate the flow of two-component rheologically complex fluids. It treats the interfaces as having a finite thickness with a phase-field parameter varying continuously from one phase to the other. Adaptive meshing is applied to produce fine grid near the interface and coarse mesh in the bulk. It leads to accurate resolution of the interface at modest computational costs. An advantage of this method is that topological changes such as interfacial rupture and coalescence happen naturally under a short-range force resembling the van der Waals force. There is no need for manual intervention as in sharp-interface model to effect such event. Moreover, this energy-based formulation easily incorporates complex rheology as long as the free energy of the microstructures is known. The complex fluids considered in this thesis include viscoelastic fluids and nematic liquid crystals. Viscoelasticity is represented by the Oldroyd-B model, derived for a dilute polymer solution as linear elastic dumbbells suspended in a Newtonian solvent. The Leslie-Ericksen model is used for nematic liquid crystals,which features distortional elasticity and viscous anisotropy. The interfacial dynamics of such complex fluids are of both scientific and practical significance. The thesis describes seven computational studies of physically interesting problems. The numerical simulations of monodisperse drop formation in microfluidic devices have reproduced scenarios of jet breakup and drop formation observed in experiments. Parametric studies have shown dripping and jetting regimes for increasing flow rates, and elucidated the effects of flow and rheological parameters on the drop formation process and the final drop size. A simple liquid drop model is used to study the neutrophil, the most common type of white blood cell, transit in pulmonary capillaries. The cell size, viscosity and rheological properties are found to determine the transit time. A compound drop model is also employed to account for the cell nucleus. The other four cases concern drop and bubble dynamics in nematic liquid crystals, as determined by the coupling among interfacial anchoring, bulk elasticity and anisotropic viscosity. In particular, the simulations reproduce unusual bubble shapes seen in experiments, and predict self-assembly of microdroplets in nematic media.
60

THE RELATIONSHIP BETWEEN PSYCHOSOCIAL FUNCTIONING AND DIFFUSE NOXIOUS INHIBITORY CONTROL FUNCTION IN WOMEN WITH PROVOKED VESTIBULODYNIA AND PAIN FREE CONTROLS

Sutton, Katherine Stella 28 September 2007 (has links)
Provoked Vestibulodynia (PVD) is the most common form of chronic vulvar pain, affecting 12% of women in the general population. PVD is characterized by a severe burning pain in response to pressure localized to the vaginal entrance. Research examining the pain component of PVD indicates that it has much in common with other chronic pain conditions. Increased pain sensitivity has been demonstrated in other chronic pain conditions to be due in part to impairment in centrally acting endogenous pain modulation systems, such as Diffuse Noxious Inhibitory Control (DNIC). DNIC is triggered by the simultaneous application of two painful stimuli, with pain at one body site inhibiting pain at another body site. Because DNIC consists of a feedback loop that involves the spinal cord and the brain, it is thought to be dependent upon both sensory and affective pain components. In the current study, 20 women with PVD and 24 controls underwent sensory testing to determine the integrity of DNIC function. Unexpectedly, women with PVD displayed a DNIC response of greater magnitude than controls. Participants also completed measures to assess the interplay between group, DNIC, and psychosocial functioning. Women with PVD experienced decreases in psychosocial functioning; however, this reduction was not found to mediate the relationship between group and DNIC function. Findings of intact DNIC function in women with PVD do not imply that PVD is not a chronic pain condition. DNIC is a complex and dynamic process and warrants further study using different stimuli and paradigms. This study supports previous literature, while adding to the development of a greater understanding of the interaction between psychophysical and psychosocial components of chronic pain, which will allow for the creation of better assessment and treatment strategies. / Thesis (Master, Psychology) -- Queen's University, 2007-09-14 00:14:17.698

Page generated in 0.0304 seconds