• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 22
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 132
  • 37
  • 25
  • 23
  • 22
  • 20
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Designing Microfluidic Control Components

Wijngaart, Wouter van der January 2002 (has links)
No description available.
52

Evaluation of Swirl and Tabs in Short Annular Diffusers

Cerantola, David 30 May 2014 (has links)
Short annular diffusers were essential components for turbomachines that have been used to expand the air entering the compressor, as interstage ducts between gas generators and power turbines, and on the exhaust gases exiting the turbine. The industrial community was interested and invested in improving diffuser design that was challenging owing to the unfavourable fluid flow effects. Efficient design of fluid flow devices was possible through the complementary use of experimental testing and computational fluid dynamics (CFD). A numerical shape optimization study was undertaken to determine preferential annular diffuser configurations. Experimental data were compared against CFD that simulated the steady-state Reynolds-averaged Navier-Stokes equations with two-equation turbulence models. This investigation reached equivalent conclusions with respect to the influences associated with diffuser geometry and swirl. Vorticity effects caused by square tabs, that were not as well understood, were investigated. The tabs were effective in reducing the central toroidal recirculation zone created by a swirling flow, but at a static pressure penalty for the area ratio, AR<2.73, diffusers tested. Results identified several shortcomings in the CFD that typically over-estimated pressure recovery and outlet velocity uniformity; however, properly qualitatively predicted wall pressure distributions and outlet velocity profiles. The use of CFD on modest grids, with preference given to the realizable k-epsilon turbulence model, for annular diffusers that have length to inlet height ratio of 12 and at least AR=2.73 with up to 20-degrees inlet swirl was encouraged as a design tool. / Thesis (Ph.D, Mechanical and Materials Engineering) -- Queen's University, 2014-05-29 09:03:16.591
53

Design de difusor aerodinâmico compacto para uma turbina eólica de pequena escala

Ximenes, Fernando Silveira January 2018 (has links)
Este trabalho tem como proposta desenvolver um difusor aerodinâmico compacto para uma turbina eólica de pequena escala, objetivando alcançar um melhor start rotacional (menor torque de partida para rotacionar) em baixas velocidades de vento. Um difusor é uma estrutura em forma de aro envolta ao rotor da turbina eólica, sua função é amplificar a captação e aceleração do vento, explorando os efeitos aerodinâmicos das zonas de vórtices de baixa pressão na saída do difusor. O estudo concentrar-se-á na manipulação da geometria dos difusores, analisando como seu design impacta no seu comportamento aerodinâmico impacta na capacidade do difusor equacionar as zonas de alta e baixa pressão ao longo de sua estrutura, essa relação é determinante para o efeito aerodinâmico que acelera o escoamento de ar, resultando em um start rotacional em baixas velocidade de vento. O ponto de partida para este trabalho são os estudos desenvolvidos por Ohya et al. (2010) sobre difusores compactos-flangeados (compact-type brimmed diffuser) para turbinas eólicas, denominado Wind-lens Technology. Para alcançar os objetivos, esta pesquisa vai utilizar simulações por CFD com software de túnel de vento virtual e ensaios experimentais em túnel de vento físico para avaliar o comportamento dinâmico (turbina + difusor). Foram desenvolvidas dezenove geometrias a partir de uma área construtiva padronizada para o design de difusores. Desenvolveu-se também, a partir dos resultados encontrados, um MFI (microseparador de fluxo interno), que consiste em uma estrutura adicional com função de potencializar as zonas de vórtices (baixa pressão) no plano de saída do escoamento de ar dos difusores. Os resultados mostraram que a manipulação da geometria do difusor produziu resultados promissores em comparação com o modelo de referência, alcançando em algumas geometrias de difusores um melhor start rotacional. O MFI mostrou-se eficaz para potencializar as zonas de baixa pressão e melhorou o start rotacional. Ao final, definiu-se dois modelos de difusores e suas respectivas versões com MFI como as melhores opções para o start rotacional. / This work aims to develop a compact wind turbine for a turbine and a small scale, aiming at a better rotational start at low wind speeds (lower starting torque to rotate). A diffuser is a rim-shaped structure wrapped around the wind turbine rotor, its function is to amplify the wind uptake and acceleration, exploiting the aerodynamic effects of the low-pressure vortex zones at the diffuser outlet. The study will focus on the manipulation of the diffuser geometry, analyzing how its design impacts on its aerodynamic behavior, especially on the diffuser's ability to equate the high and low pressure zones along its structure, this relation is decisive for the aerodynamic effect that accelerates the air flow, resulting in a rotational start at low wind speeds. The basis for this work are studies developed by Ohya et al. (2010) on compact-flanged diffusers for wind turbines, called Wind-lens Technology. To achieve the objectives, this research will use CFD simulations with virtual wind tunnel software and experimental tests in physical wind tunnel to evaluate the dynamic behavior (turbine + diffuser). Nineteen geometries were developed from a standardized design area for the design of diffusers. An MFI (internal flow microseparator) has also been developed, which is an additional structure whose function is to potentiate the low pressure zones of the diffusers. The results showed that the manipulation of the diffuser geometry produced promising results in comparison to the reference model, reaching in some conditions superior results in RPM and initial start. The MFI proved to be effective in boosting the low pressure zones and improved the initial start. At the end, two models of diffusers and their respective versions with MFI were defined as the best options for the initial start.
54

Aerodynamics and performance enhancement of a ground-effect diffuser

Ehirim, Obinna Hyacinth January 2018 (has links)
This study involved experimental and equivalent computational investigations into the automobile-type 3―D flow physics of a diffuser bluff body in ground-effect and novel passive flow-control methods applied to the diffuser flow to enhance the diffuser’s aerodynamic performance. The bluff body used in this study is an Ahmed-like body employed in an inverted position with the slanted section together with the addition of side plates along both sides forming the ramped diffuser section. The first part of the study confirmed reported observations from previous studies that the downforce generated by the diffuser in proximity to a ground plane is influenced by the peak suction at the diffuser inlet and subsequent static pressure-recovery towards the diffuser exit. Also, when the bluff body ride height is gradually reduced from high to low, the diffuser flow as indicated by its force curve and surface flow features undergoes four distinct flow regimes (types A to D). The types A and B regimes are reasonably symmetrical, made up of two low-pressure core longitudinal vortices travelling along both sides of the diffuser length and they increase downforce and drag with reducing ride height. However, below the ride heights of the type B regime, types C and D regimes are asymmetrical because of the breakdown of one vortex; consequently a significant loss in downforce and drag occurs. The second part of the study involved the use ― near the diffuser exit ― of a convex bump on the diffuser ramp surface and an inverted wing between the diffuser side plates as passive flow control devices. The modification of the diffuser geometry with these devices employed individually or in combination, induced a second-stage pressure-drop and recovery near the diffuser exit. This behaviour was due to the radial pressure gradient induced on the diffuser flow by the suction surface ii curvature of the passive devices. As a result of this aerodynamic phenomenon, the diffuser generated across the flow regimes additional downforce, and a marginal increase in drag due to the profile drag induced by the devices.
55

Design de difusor aerodinâmico compacto para uma turbina eólica de pequena escala

Ximenes, Fernando Silveira January 2018 (has links)
Este trabalho tem como proposta desenvolver um difusor aerodinâmico compacto para uma turbina eólica de pequena escala, objetivando alcançar um melhor start rotacional (menor torque de partida para rotacionar) em baixas velocidades de vento. Um difusor é uma estrutura em forma de aro envolta ao rotor da turbina eólica, sua função é amplificar a captação e aceleração do vento, explorando os efeitos aerodinâmicos das zonas de vórtices de baixa pressão na saída do difusor. O estudo concentrar-se-á na manipulação da geometria dos difusores, analisando como seu design impacta no seu comportamento aerodinâmico impacta na capacidade do difusor equacionar as zonas de alta e baixa pressão ao longo de sua estrutura, essa relação é determinante para o efeito aerodinâmico que acelera o escoamento de ar, resultando em um start rotacional em baixas velocidade de vento. O ponto de partida para este trabalho são os estudos desenvolvidos por Ohya et al. (2010) sobre difusores compactos-flangeados (compact-type brimmed diffuser) para turbinas eólicas, denominado Wind-lens Technology. Para alcançar os objetivos, esta pesquisa vai utilizar simulações por CFD com software de túnel de vento virtual e ensaios experimentais em túnel de vento físico para avaliar o comportamento dinâmico (turbina + difusor). Foram desenvolvidas dezenove geometrias a partir de uma área construtiva padronizada para o design de difusores. Desenvolveu-se também, a partir dos resultados encontrados, um MFI (microseparador de fluxo interno), que consiste em uma estrutura adicional com função de potencializar as zonas de vórtices (baixa pressão) no plano de saída do escoamento de ar dos difusores. Os resultados mostraram que a manipulação da geometria do difusor produziu resultados promissores em comparação com o modelo de referência, alcançando em algumas geometrias de difusores um melhor start rotacional. O MFI mostrou-se eficaz para potencializar as zonas de baixa pressão e melhorou o start rotacional. Ao final, definiu-se dois modelos de difusores e suas respectivas versões com MFI como as melhores opções para o start rotacional. / This work aims to develop a compact wind turbine for a turbine and a small scale, aiming at a better rotational start at low wind speeds (lower starting torque to rotate). A diffuser is a rim-shaped structure wrapped around the wind turbine rotor, its function is to amplify the wind uptake and acceleration, exploiting the aerodynamic effects of the low-pressure vortex zones at the diffuser outlet. The study will focus on the manipulation of the diffuser geometry, analyzing how its design impacts on its aerodynamic behavior, especially on the diffuser's ability to equate the high and low pressure zones along its structure, this relation is decisive for the aerodynamic effect that accelerates the air flow, resulting in a rotational start at low wind speeds. The basis for this work are studies developed by Ohya et al. (2010) on compact-flanged diffusers for wind turbines, called Wind-lens Technology. To achieve the objectives, this research will use CFD simulations with virtual wind tunnel software and experimental tests in physical wind tunnel to evaluate the dynamic behavior (turbine + diffuser). Nineteen geometries were developed from a standardized design area for the design of diffusers. An MFI (internal flow microseparator) has also been developed, which is an additional structure whose function is to potentiate the low pressure zones of the diffusers. The results showed that the manipulation of the diffuser geometry produced promising results in comparison to the reference model, reaching in some conditions superior results in RPM and initial start. The MFI proved to be effective in boosting the low pressure zones and improved the initial start. At the end, two models of diffusers and their respective versions with MFI were defined as the best options for the initial start.
56

Contrôle du décollement dans un diffuseur aubé de turbomachine centrifuge / Detachment control in a vaned diffuser of a centrifugal fan

Cherdieu, Patrick 20 December 2013 (has links)
L'amélioration de la performance des turbomachines fonctionnant loin de leur point d'adaptation passe par la maîtrise des phénomènes instationnaires qui se produisent dans ces différents organes. L'étude présentée ici se concentre sur les interactions entre une roue de ventilateur centrifuge et son diffuseur. Elle vise, par des mesures de pression sur les différentes parois du diffuseur, ainsi que par des sondages dans les canaux inter-aubages à analyser finement ces phénomènes instationnaires et notamment les décollements fluctuants apparaissant sur les aubes à sur débit, et à mesurer leur influence sur la performance du diffuseur. Dans un second temps, un dispositif de contrôle passif de ces décollements utilisant des générateurs de vortex est proposé. Plusieurs configurations sont testés et leurs résultats sont comparés / The performance improvement of turbomachinery operating at off-design conditions can be achieved by the understanding of unsteady phenomena which are occuring in its components. The present study is focussing on the interaction between a centrifugal impeller fan and its vaned diffuser. It aims at analysing precisely these unsteady phenomena (and especially the fluctuating separated region identified on the vanes wall) and their consequences on the diffuser performance by three holes probe and unsteady pressure measurements. In a second step, devices for a passive control of the separation are introduced. Several configurations are tested and their results are compared
57

Unsteady Diffuser Flow in an Aeroengine Centrifugal Compressor

William J Gooding (8747457) 24 April 2020 (has links)
<p>Rising fuel costs and growing environmental concerns have forced gas turbine engine manufacturers to place high value on reducing fuel burn. This trend has pushed compressor technology into new design spaces that are not represented by historical experience. Specifically, centrifugal compressor diffusers are trending toward higher pressure recovery and smaller diameters. The internal fluid dynamics in these new flow regimes are not well understood and additional study is necessary. This work outlines detailed experimental and numerical observations of the flow field through a vaned diffuser for aeroengine applications.</p> <p>The experimental data consist of extensive Laser Doppler velocimetry measurements of the unsteady velocity field from the impeller trailing edge through the majority of the diffuser passage. These data were obtained non-intrusively and yielded all three components of the velocity vector field at approximately 2,000 geometric points. The correlation between fluctuations in the three velocity components were also observed at several key locations to determine the components of the local Reynolds stress tensor.</p> <p>These data indicated a jet/wake profile at the impeller exit represented by a consistent velocity deficit region from hub to shroud adjacent to the suction surface of the passage. This region was more prevalent adjacent to the splitter blade. The unsteady fluctuations due to the propagation of the jet and wake through the diffuser passage persist to 40% downstream of the throat. A complex secondary flow field was also observed with large axial velocities and a passage-spanning vortex developing through the diffuser passage. The velocity data and total-pressure data indicated a region of flow separation developing along the pressure surface of the vane near the hub due to the unsteady propagation of the jet and wake flow through the diffuser. Although this region was stable in time, its development arose due to unsteady aspects of the flow. Finally, the strong interconnection between the jet and wake flow, unsteady fluctuations, secondary velocities, incidence, and flow separation was demonstrated. </p> <p>Computationally, a “best-practice” methodology for the modelling of a centrifugal compressor was developed by a systematic analysis of various turbulence models and many modelling features. The SST and BSL-EARSM turbulence models with the inclusion of fillets, surface roughness, and non-adiabatic walls was determined to yield the best representation of the detailed flow development through the diffuser in steady (mixing-plane) simulations. The accurate modelling of fillets was determined to significantly impact the prediction of flow separation with the SST turbulence closure model. Additionally, the frozen rotor approach was shown to not accurately approximate the influence of unsteady effects on the flow development.</p> <p>Unsteady simulations were also compared to the detailed experimental data through the diffuser. The BSL-EARSM turbulence model best matched the experimentally observed flow field due to the SST model’s prediction of flow separation in the shroud-pressure side corner of the passage. In general, lower levels of axial velocity were predicted numerically that resulted in less spanwise mixing between the endwall and freestream flows. Additionally, the turbulent kinetic energy levels in the computational results showed little streamwise variation through the vaneless and semi-vaneless space. The large variation observed experimentally indicated that the production and dissipation of turbulent kinetic energy through this region was not accurately predicted in the two turbulence models implemented for the unsteady simulations.</p>
58

Návrh regulovatelného ohřevu spřádací hlavy a dohřevu vláken s řízeným prouděním vzduchu pro zařízení k odstředivému spřádání nanovláken / Design of controllable heating of the spinning head and reheating of fibers with controlled air flow for devices for centrifugal spinning of nanofibers

Janošík, Lukáš January 2021 (has links)
This Master thesis deals with the design and implementation of the spinning head heating for the fibers manufacturing. The first part of this thesis compares the problems of spinning head heating by means of radiant heat and electromagnetic induction. The next part of the thesis deals with the design and implementation of the selected induction heating of the spinning head together with its partial peripherals. The thesis continues with the design of a controlled air flow through the chambre and design of reheating fibers. In the following part of the thesis, functionality tests and partial measurements are performed on the device. At the end, the measurement results are evaluated and compared.
59

Experimentální ověření ejektoru a vytvoření matematického modelu. / Experimental verification of ejector and creation of mathematical model.

Strmiska, Michal January 2008 (has links)
This diploma thesis deals with the area of ejectors. In the intoduction, an ejector is classed as an hydraulic machine. There is also an introduction of the principle and application of this machine there. The next part describes two different ways of calculation and there is a suggestion how to get characteristics, that were achieved by calculation in MS Excel, projected. The purpose of this diploma thesis is to confront this mathematical model with the experiment done in school laboratory at Kaplan department of hydraulic machines. The description of this experiment and the evaluation procedure of measured values is described in the final part of this diploma thesis.
60

Vestavby v savce vírové turbiny / Installations in the draft tube of the swirl turbine

Kilian, Ondřej January 2011 (has links)
Diploma thesis deals with design and exploration of installation in the draft tube of the swirl turbine. Use of the draft tube is defined in the first part, with illustration of energetical gain and efficiency of draft tube. Further the suitable shape of draft tube is studied by CFD computing. Design, research and evaluation of installation in the draft tube are solved in the main part.

Page generated in 0.0312 seconds