• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 22
  • 12
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 125
  • 35
  • 22
  • 21
  • 21
  • 19
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Pulsating flow studies in a planar wide-angled diffuser upstream of automotive catalyst monoliths

Yamin, A. K. M. January 2012 (has links)
Automotive catalytic converters are used extensively in the automotive industry to reduce toxic pollutants from vehicle exhausts. The flow across automotive exhaust catalysts is distributed by a sudden expansion and has a significant effect on their conversion efficiency. The exhaust gas is pulsating and flow distribution is a function of engine operating condition, namely speed (frequency), load (flow rate) and pressure loss across the monolith. The aims of this study are to provide insight into the development of the pulsating flow field within the diffuser under isothermal conditions and to assess the steady-state computational fluid dynamics (CFD) predictions of flow maldistribution at high Reynolds numbers. Flow measurements were made across an automotive catalyst monolith situated downstream of a planar wide-angled diffuser in the presence of pulsating flow. Cycle-resolved Particle Image Velocimetry (PIV) measurements were made in the diffuser and hot wire anemometry (HWA) downstream of the monoliths. The ratio of pulse period to residence time within the diffuser (J factor) characterises the flow distribution. During acceleration the flow remained attached to the diffuser walls for some distance before separating near the diffuser inlet later in the cycle. Two cases with J ~ 3.5 resulted in very similar flow fields with the flow able to reattach downstream of the separation bubbles. With J = 6.8 separation occurred earlier with the flow field resembling, at the time of deceleration, the steady flow field. Increasing J from 3.5 to 6.8 resulted in greater flow maldistribution within the monoliths; steady flow producing the highest maldistribution in all cases for the same Re. The oblique entry pressure loss of monoliths were measured using a one-dimensional steady flow rig over a range of approach Reynolds number (200 < Rea < 4090) and angles of incidence (0o < α < 70o). Losses increased with α and Re at low mass flow rates but were independent of Re at high flow rates being 20% higher than the transverse dynamic pressure. The flow distribution across axisymmetric ceramic 400 cpsi and perforated 600 cpsi monoliths were modelled using CFD and the porous medium approach. This requires knowledge of the axial and transverse monolith resistances; the latter being only applicable to the radially open structure. The axial resistances were measured by presenting uniform flow to the front face of the monolith. The transverse resistances were deduced by best matching CFD predictions to measurements of the radial flow profiles obtained downstream of the monolith when presented with non-uniform flow at its front face. CFD predictions of the flow maldistibution were performed by adding the oblique entry pressure loss to the axial resistance to simulate the monolith losses. The critical angle approach was used to improve the predictions, i.e. the oblique entry loss was limited such that the losses were assumed constant above a fixed critical angle, αc. The result showed that the perforated 600 cpsi monolith requires the entrance effect to be restricted above αc = 81o, while the losses were assumed constant above αc = 85o for the ceramic 400 cpsi monolith. This might be due to the separation bubble at the monolith entrance being restricted by the smaller hydraulic diameter of the perforated monolith thus limiting the oblique entry loss at the lower incidence angle.
42

Performance evaluation of a micro gas turbine centrifugal compressor diffuser

Krige, David Schabort 03 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2013. / ENGLISH ABSTRACT: Micro gas turbines used in the aerospace industry require high performance with a compact frontal area. These micro gas turbines are often considered unattractive and at times impractical due to their poor fuel consumption and low cycle efficiency. This led to a joint effort to investigate and analyze the components of a particular micro gas turbine to determine potential geometry and performance improvements. The focus of this investigation is the radial vaned diffuser which forms part of a centrifugal compressor. The size of the diffuser is highly constrained by the compact gas turbine diameter. The micro gas turbine under consideration is the BMT 120 KS. The radial vaned diffuser is analyzed by means of 1-D and 3-D (CFD) analyses using CompAero and FINETM/Turbo respectively. The aim is to design a diffuser that maximizes the total-to-static pressure recovery and mass flow rate through the compressor with minimal flow losses. An experimental test facility was constructed and the numerical computations were validated against the experimental data. Three new diffusers were designed, each with a different vane geometry. The static-to-static pressure ratio over the radial diffuser was improved from 1.39 to 1.44 at a rotational speed of 120 krpm. The static pressure recovery coefficient was improved from 0.48 to 0.73 with a reduction in absolute Mach number from 0.47 to 0.22 at the radial diffuser discharge. / AFRIKAANSE OPSOMMING: Mikro-gasturbines wat in die lugvaart industrie gebruik word, vereis ‘n hoë werkverrigting met ‘n kompakte frontale area. Hierdie gasturbines word menigmaal onaantreklik geag weens swak brandstofverbruik en n lae siklus effektiewiteit. Dit het gelei tot ‘n gesamentlike projek om elke komponent van ‘n spesifieke mikro-gasturbine te analiseer en te verbeter. Die fokus van dié ondersoek is die radiale lem diffusor wat deel vorm van ‘n sentrifugaalkompressor. Die deursnee van die diffusor word deur die kompakte gasturbine diameter beperk. Die mikro gasturbine wat ondersoek word is die BMT 120 KS. Die radiale lem diffusor word geanaliseer deur middel van 1-D en 3-D (BVD) berekeninge met behulp van CompAero en FINETM/Turbo onderskeidelik. Die doelwit is om ‘n diffusor te ontwerp met ‘n verhoogde massavloei en drukverhouding oor die kompressor. ‘n Eksperimentele toetsfasiliteit is ingerig om toetse uit te voer en word gebruik om numeriese berekeninge te bevestig. Die staties-tot-stasiese drukstyging oor die radiale diffusor is verbeter van 1.39 tot 1.44 by ‘n omwentelingspoed van 120 kopm. Die statiese drukherwinningskoeffisiënt is verbeter van 0.48 tot 0.73 met ‘n vermindering in die absolute Machgetal vanaf 0.47 tot 0.22 by die radiale diffusor uitlaat.
43

Large eddy simulation for automotive vortical flows in ground effect

Schembri-Puglisevich, Lara January 2013 (has links)
Large Eddy Simulation (LES) is carried out using the Rolls-Royce Hydra CFD code in order to investigate and give further insight into highly turbulent, unsteady flow structures for automotive applications. LES resolves time dependent eddies that are modelled in the steady-state by Reynolds-Averaged Navier-Stokes (RANS) turbulence models. A standard Smagorinsky subgrid scale model is used to model the energy transfer between large and subgrid scales. Since Hydra is an unstructured algorithm, a variety of unstructured hexahedral, tetrahedral and hybrid grids are used for the different cases investigated. Due to the computational requirements of LES, the cases in this study replicate and analyse generic flow problems through simplified geometry, rather than modelling accurate race car geometry which would lead to infeasible calculations. The first case investigates the flow around a diffuser-equipped bluff body at an experimental Reynolds number of 1.01 times 10 to the power 6 based on model height and inlet velocity. LES is carried out on unstructured hexahedral grids of 10 million and 20 million nodes, with the latter showing improved surface pressure when compared to the experiments. Comparisons of velocity and vorticity between the LES and experiments at the diffuser exit plane show a good level of agreement. Flow visualisation of the vortices in the diffuser region and behind the model from the mean and instantaneous flow attempts to explain the relation or otherwise between the two. The main weakness of the simulation was the late laminar to turbulent transition in the underbody region. The size of the domain and high experimental Reynolds number make this case very challenging. After the challenges faced by the diffuser-equipped bluff body, the underbody region is isolated so that increased grid refinement can be achieved in this region and the calculation is run at a Reynolds number of 220, 000, reducing the computational requirement from the previous case. A vortex generator mounted onto a flat underbody at an onset angle to the flow is modelled to generate vortices that extend along the length of the underbody and its interaction with the ground is analysed. Since the vortex generator resembles a slender wing with an incidence to the flow, a delta wing study is presented as a preliminary step since literature on automotive vortex generators in ground effect is scarce. Results from the delta wing study which is run at an experimental Reynolds number of 1.56 times 10 to the power 6 are in very good agreement with previous experiments and Detached Eddy Simulation (DES) studies, giving improved detail and understanding. Axial velocity and vorticity contours at several chordwise stations show that the leading edge vortices are predicted very well by a 20 million node tetrahedral grid. Sub-structures that originate from the leading edge of the wing and form around the core of the leading edge vortex are also captured. Large Eddy Simulation for the flow around an underbody vortex generator over a smooth ground and a rough ground is presented. A hexahedral grid of 40 million nodes is used for the smooth ground case, whilst a 48 million node hybrid grid was generated for the rough ground case so that the detailed geometry near the ground could be captured by tetrahedral cells. The geometry for the rough surface is modelled by scanning a tarmac surface to capture the cavities and protrusions in the ground. This is the first time that a rough surface representing a tarmac road has been computed in a CFD simulation, so that its effect on vortex decay can be studied. Flow visualisation of the instantaneous flow has shown strong interaction with the ground and the results from this study have given an initial understanding in this area.
44

DESIGN AND OPTIMIZATION OF PERISTALTIC MICROPUMPS USING EVOLUTIONARY ALGORITHMS

Bhadauria, Ravi 26 August 2009 (has links)
A design optimization based on coupled solid–fluid analysis is investigated in this work to achieve specific flow rate through a peristaltic micropump. A micropump consisting of four pneumatically actuated nozzle/diffuser shaped moving actuators on the sidewalls is considered for numerical study. These actuators are used to create pressure difference in the four pump chambers, which in turn drives the fluid through the pump in one direction. Genetic algorithms along with artificial neural networks are used for optimizing the pump geometry and the actuation frequency. A simple example with moving walls is considered for validation by developing an exact analytical solution of Navier–Stokes equation and comparing it with numerical simulations. Possible applications of these pumps are in microelectronics cooling and drug delivery. Based on the results obtained from the fluid–structure interaction analysis, three optimized geometries result in flow rates which match the predicted flow rates with 95% accuracy. These geometries need further investigation for fabrication and manufacturing issues.
45

Experimental and Computational Investigation of Thermal-Flow Characteristics of Gas Turbine Reverse-Flow Combustor

Wang, Liang 05 August 2010 (has links)
Reverse-flow combustors have been used in heavy land-based gas turbines for many decades. A sheath is typically installed to provide cooling at an expense of large pressure losses, through small jet impingement cooling and strong forced convention channel flow. With the modern advancement in metallurgy and thermal-barrier coating technologies, it may become possible to remove this sheath to recover the pressure losses without melting the combustor chamber. However, without the sheath, the flow inside the dump diffuser may exert nonuniform cooling on the combustion chamber. Therefore, the objective of this project is to investigate the flow pattern, pressure drop, and heat transfer in the dump-diffuser reverse-flow combustor with and without sheath to determine if the sheath could be removed. The investigation was conducted through both experimental and computational simulation. The results show that 3.3% pressure losses could be recovered and the highest wall temperature will increase 18% without the sheath.
46

Design de difusor aerodinâmico compacto para uma turbina eólica de pequena escala

Ximenes, Fernando Silveira January 2018 (has links)
Este trabalho tem como proposta desenvolver um difusor aerodinâmico compacto para uma turbina eólica de pequena escala, objetivando alcançar um melhor start rotacional (menor torque de partida para rotacionar) em baixas velocidades de vento. Um difusor é uma estrutura em forma de aro envolta ao rotor da turbina eólica, sua função é amplificar a captação e aceleração do vento, explorando os efeitos aerodinâmicos das zonas de vórtices de baixa pressão na saída do difusor. O estudo concentrar-se-á na manipulação da geometria dos difusores, analisando como seu design impacta no seu comportamento aerodinâmico impacta na capacidade do difusor equacionar as zonas de alta e baixa pressão ao longo de sua estrutura, essa relação é determinante para o efeito aerodinâmico que acelera o escoamento de ar, resultando em um start rotacional em baixas velocidade de vento. O ponto de partida para este trabalho são os estudos desenvolvidos por Ohya et al. (2010) sobre difusores compactos-flangeados (compact-type brimmed diffuser) para turbinas eólicas, denominado Wind-lens Technology. Para alcançar os objetivos, esta pesquisa vai utilizar simulações por CFD com software de túnel de vento virtual e ensaios experimentais em túnel de vento físico para avaliar o comportamento dinâmico (turbina + difusor). Foram desenvolvidas dezenove geometrias a partir de uma área construtiva padronizada para o design de difusores. Desenvolveu-se também, a partir dos resultados encontrados, um MFI (microseparador de fluxo interno), que consiste em uma estrutura adicional com função de potencializar as zonas de vórtices (baixa pressão) no plano de saída do escoamento de ar dos difusores. Os resultados mostraram que a manipulação da geometria do difusor produziu resultados promissores em comparação com o modelo de referência, alcançando em algumas geometrias de difusores um melhor start rotacional. O MFI mostrou-se eficaz para potencializar as zonas de baixa pressão e melhorou o start rotacional. Ao final, definiu-se dois modelos de difusores e suas respectivas versões com MFI como as melhores opções para o start rotacional. / This work aims to develop a compact wind turbine for a turbine and a small scale, aiming at a better rotational start at low wind speeds (lower starting torque to rotate). A diffuser is a rim-shaped structure wrapped around the wind turbine rotor, its function is to amplify the wind uptake and acceleration, exploiting the aerodynamic effects of the low-pressure vortex zones at the diffuser outlet. The study will focus on the manipulation of the diffuser geometry, analyzing how its design impacts on its aerodynamic behavior, especially on the diffuser's ability to equate the high and low pressure zones along its structure, this relation is decisive for the aerodynamic effect that accelerates the air flow, resulting in a rotational start at low wind speeds. The basis for this work are studies developed by Ohya et al. (2010) on compact-flanged diffusers for wind turbines, called Wind-lens Technology. To achieve the objectives, this research will use CFD simulations with virtual wind tunnel software and experimental tests in physical wind tunnel to evaluate the dynamic behavior (turbine + diffuser). Nineteen geometries were developed from a standardized design area for the design of diffusers. An MFI (internal flow microseparator) has also been developed, which is an additional structure whose function is to potentiate the low pressure zones of the diffusers. The results showed that the manipulation of the diffuser geometry produced promising results in comparison to the reference model, reaching in some conditions superior results in RPM and initial start. The MFI proved to be effective in boosting the low pressure zones and improved the initial start. At the end, two models of diffusers and their respective versions with MFI were defined as the best options for the initial start.
47

Designing Microfluidic Control Components

Wijngaart, Wouter van der January 2002 (has links)
No description available.
48

Biological and Physical Strategies to Improve the Therapeutic Index of Photodynamic Therapy

Rendon Restrepo, Cesar Augusto 28 July 2008 (has links)
Photodynamic therapy (PDT) derives its tumour selectivity from preferential photosensitizer accumulation and short light penetration in tissue. However, additional strategies are needed to improve the therapeutic index of PDT in oncological applications where light is delivered interstitially to large volumes (e.g. prostate), or when adjacent normal tissue is extremely sensitive (e.g. brain). Much research to improve PDT's selectivity is directed towards developing targeted photosensitizers. Here, I present two alternative strategies to improve PDT's selectivity, without compromising its efficacy. For interstitial delivery, I investigated whether customizable cylindrical diffusers can be used to deliver light doses that conform better to target geometries, specifically the prostate. Additionally, I examined whether the neuroprotectant erythropoietin, used as an adjuvant to PDT for brain tumours, can reduce the sensitivity of normal tissue, thereby improving treatment selectivity. To determine if tailored diffusers constitute an improvement over conventional ones, I introduce a novel optimization algorithm for treatment planning. I also analyze the sensitivity of the resulting plans to changes in the optical properties and diffuser placement. These results are contextualized by a mathematical formalism to characterize the light dose distributions arising from tailored diffusers. In parallel, I investigate the neuroprotective effects of erythropoietin in PDT of primary cortical neurons in culture and normal rat brain in vivo. I show that the most important parameter determining prostate coverage is the number of diffusers employed. Moreover, while tailored diffusers do offer an improvement over conventional ones, the improvement is likely masked by perturbations introduced by the uncertainties of light delivery. Although these results largely discard the use of tailored diffusers in prostate PDT, significant insight has been gained into PDT treatment planning, and tailored diffusers may still be advantageous in more complicated geometries. Additionally, I show that erythropoietin does not improve survival of PDT-treated neurons PDT, nor reduces the volume of necrosis in vivo, for the ranges of conditions and doses studied. To our knowledge, this is the first time this strategy has been tested in brain PDT and deserves to be investigated further, by using later time-points, functional outcomes, and other neuroprotectants.
49

Biological and Physical Strategies to Improve the Therapeutic Index of Photodynamic Therapy

Rendon Restrepo, Cesar Augusto 28 July 2008 (has links)
Photodynamic therapy (PDT) derives its tumour selectivity from preferential photosensitizer accumulation and short light penetration in tissue. However, additional strategies are needed to improve the therapeutic index of PDT in oncological applications where light is delivered interstitially to large volumes (e.g. prostate), or when adjacent normal tissue is extremely sensitive (e.g. brain). Much research to improve PDT's selectivity is directed towards developing targeted photosensitizers. Here, I present two alternative strategies to improve PDT's selectivity, without compromising its efficacy. For interstitial delivery, I investigated whether customizable cylindrical diffusers can be used to deliver light doses that conform better to target geometries, specifically the prostate. Additionally, I examined whether the neuroprotectant erythropoietin, used as an adjuvant to PDT for brain tumours, can reduce the sensitivity of normal tissue, thereby improving treatment selectivity. To determine if tailored diffusers constitute an improvement over conventional ones, I introduce a novel optimization algorithm for treatment planning. I also analyze the sensitivity of the resulting plans to changes in the optical properties and diffuser placement. These results are contextualized by a mathematical formalism to characterize the light dose distributions arising from tailored diffusers. In parallel, I investigate the neuroprotective effects of erythropoietin in PDT of primary cortical neurons in culture and normal rat brain in vivo. I show that the most important parameter determining prostate coverage is the number of diffusers employed. Moreover, while tailored diffusers do offer an improvement over conventional ones, the improvement is likely masked by perturbations introduced by the uncertainties of light delivery. Although these results largely discard the use of tailored diffusers in prostate PDT, significant insight has been gained into PDT treatment planning, and tailored diffusers may still be advantageous in more complicated geometries. Additionally, I show that erythropoietin does not improve survival of PDT-treated neurons PDT, nor reduces the volume of necrosis in vivo, for the ranges of conditions and doses studied. To our knowledge, this is the first time this strategy has been tested in brain PDT and deserves to be investigated further, by using later time-points, functional outcomes, and other neuroprotectants.
50

Designing Microfluidic Control Components

Wijngaart, Wouter van der January 2002 (has links)
No description available.

Page generated in 0.0604 seconds