• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 23
  • 10
  • 9
  • 8
  • 5
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 143
  • 143
  • 21
  • 20
  • 18
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Měření difúsního koeficientu membrán dialyzačních filtrů / Measurement of Dialyser-Membrane Diffusion Coefficient

Kašák, Pavel January 2013 (has links)
This thesis focuses on the measurement of diffusion coefficient of dialysis membrane. The first part describes possibilities of membrane modelling. Basic models, which allow us to determine the basic characteristics of dialysis membranes like permeability and diffusion coefficient, are described. Next chapter deals with basic types and properties of membranes. The main part focuses on making the experimental installation, which is used to simulate permeance of contrast agent, used in DCE-MRI, through dialysis membrane. The last theoretical chapter describes calculations used to estimate diffusion coefficient. Practical part of this thesis uses a designed experimental installation for estimation of diffusion coefficient for two contrast agents Gadovist® and Multihance®.
102

Využití difuzních technik při studiu reaktivity biokoloidů / Utilization of Diffusive Techniques in Study on Reactivity of Biocolloids

Kalina, Michal January 2015 (has links)
The main aim of this thesis is the utilization of simple diffusion techniques for the study on transport properties of copper ions in the systems containing humic acids with respect to the other parameters, which can affect the process (the structure of diffusion environment, the interactions between transported specie and diffusion matrices, selective blocking of binding sites of humic acids). The first part of experimental works was focused on characterization of studied materials (humic acids, humic sol and humic hydrogel). The main part of the thesis was dealing with the optimization of simple diffusion techniques, which were suitable for the study on transport of copper ions in matrices containing humic acids, taking into account the mutual interactions between studied components in the system. The obtained diffusion characteristics were compared to the data determined using sorption experiments. Consequently, the minor goal of the experimental works of this thesis was also the assessment of the influence of basic physico-chemical parameters of studied materials on transport phenomenon.
103

Difuzivita huminových hydrogelů / Diffusivity of humic hydrogels

Král, Jan January 2017 (has links)
Presented diploma thesis focuses on the study of diffusion of cupric ions in humic acid gels. A total of fifth different standards of humic acids and one sample humic acid prepared from same source as in bachelor's thesis, on which this thesis continues, were used for preparation solutions of humic acids. Thereafter, these solutions were used for preparation of agarose hydrogels, which were necessary in following diffusion experiments. The objective of the work was to compare transport properties of humic standards between themselves and then compare standards with humic acid prepared from same source as in bachelor's thesis. Measure, which was used to determine the transport properties, was comparison of effective diffusion coefficients. Method of instantaneous planar source diffusion was used to compare them. This method was based monitoring temporal evolution of diffusion profiles of cupric ions in humic hydrogels. Copper ions were selected as diffusing medium because of their high affinity and strong bonds to humic acids.
104

The ion release behaviours and water sorption of novel resin-based calcium phosphate cement

AlZain, Afnan Omar, 1981- January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Calcium phosphate-filled restorative materials were developed to provide calcium (Ca) and phosphate (PO4) ions, which have been proposed to enhance remineralization of demineralized tooth structure. Recently, tricalcium phosphate (TCP)-filled restorative materials were introduced as an alternative to amorphous calcium phosphate. The TCP filler has a more crystalline structure than ACP and is therefore potentially stronger. The aim of the present study was to examine TCP-filled restorative resins at different concentration levels at different time intervals to characterize the concentrations of Ca and PO4 ions released, and to measure the water sorption (WS) of these resins. An in vitro study was conducted by formulating resin composite using TCP as the filler mixed with EBPADMA, HmDMA, and HEMA as the resin matrix. One-hundred- sixty samples were prepared, 40 samples of each filler concentration (30 percent, 40 percent, 50 percent, and 60 percent) by weight. From each filler concentration, 5 samples of each of the 8 time points (time intervals of 4 h, 8 h, 12 h, 24 h, 3 d, 7 d, 14 d, and 21 d) were immersed in 100-ml deionized water. Calcium and PO4 ions were measured using atomic absorption spectroscopy and light spectroscopy, respectively. Water sorption (WS) was measured according to ISO 4049 specification and then the WS and the diffusion coefficient were calculated. The significance level was set at p = 0.001. The results indicated that Ca and PO4 ion release increased with increasing filler level at a rate faster than being linear. In addition, WS results were very high and failed to meet the ISO 4049 specification requirement. Diffusion coefficient results were also high. One-way ANOVA test for only 21-day data revealed that there is a statistically significant difference in filler level percent, and two-way ANOVA testing revealed that there is a statistically significant interaction between time and filler level percent on the Ca, PO4 released and WS. It can be concluded that the concentrations of Ca and PO4 released and WS were affected by composition of the monomers, filler level and type, dispersion, and the absence of coupling agent. Although this TCP-filled restorative material may release Ca and PO4, it cannot serve as a restorative material due to high WS values. Further study is needed to improve the material and evaluate its ability in promoting remineralization of the tooth structure in order for it to serve its purpose.
105

Interdiffusion And Impurity Diffusion In Magnesium Solid Solutions

Kammerer, Catherine 01 January 2013 (has links)
Magnesium, being lightweight, offers potential to be developed into extensive structural applications. The transportation segment has particular interest in Mg and Mg alloy for applications where reduced vehicle weight is proportional to increased fuel efficiency. Aluminum and zinc are two of the most common alloying elements in commercial Mg alloys. They improve the physical properties of Mg through solid solution strengthening and precipitation hardening. Diffusion plays a key role in the kinetics of and microstructural development during solidification and heat treatment. However, there is limited diffusion data available for Mg and Mg alloys. In particular, because Al is monoisotopic, tracer diffusion data is not available. Interdiffusion of Mg solid solution with Zn also does not exist in literature. The diffusional interaction of Al and Zn in Mg solid solution at temperatures ranging from 623 – 723K was examined using solid-to-solid diffusion couple method. The objective of this thesis is two-fold: first, is the examination of interdiffusion in the Mg solid solution phase of the binary Mg-Al and Mg-Zn systems; second, is to explore non-conventional analytical methods to determine impurity diffusion coefficients. The quality of diffusion bonding was examined by optical microscopy and scanning electron microscopy with X-ray energy dispersive spectroscopy, and concentration profiles were determined using electron probe microanalysis with pure standards and ZAF matrix correction. Analytical methods of concentration profiles based on Boltzmann-Matano analysis for binary alloys are presented along with compositional dependent interdiffusion coefficients. As the iv concentration of Al or Zn approaches the dilute ends, an analytical approach based on the Hall method was employed to estimate the impurity diffusion coefficients. Zinc was observed to diffuse faster than Al, and in fact, the impurity diffusion coefficient of Al was smaller than the self-diffusion coefficient of Mg. In the Mg solid solution with Al, interdiffusion coefficients increased by an order of magnitude with an increase in Al concentration. Activation energy and pre-exponential factor for the average effective interdiffusion coefficient in Mg solid solution with Al was determined to be 186.8 KJ/mole and 7.69 x 10-1 m2/sec. On the other hand, in the Mg solid solution with Zn, interdiffusion coefficients did not vary significantly as a function of Zn concentration. Activation energy and pre-exponential factor for the average effective interdiffusion coefficient in Mg solid solution with Zn was determined to be 129.5 KJ/mole and 2.67 x 10-4 m2/sec. Impurity diffusion coefficients of Al in Mg was determined to have activation energy and pre-exponential factor of 144.1 KJ/mole and 1.61 x 10-4 m2/sec. Impurity diffusion coefficients of Zn in Mg was determined to have activation energy and preexponential factor of 109.8 KJ/mole and 1.03 x 10-5 m2/sec. Temperature and compositiondependence of interdiffusion coefficients and impurity diffusion coefficients are examined with respect to reported values in literature, thermodynamic factor, Φ, diffusion mechanisms in hexagonal close packed structure, and experimental uncertainty
106

In-Situ Chlorine Gas Generation for Chlorination and Purification of Rare Earth and Actinide Metals

Schvaneveldt, Mark H 01 August 2022 (has links)
Rare earth and actinide metals, critical to security, medicine, and the economy, have been processed through methods such as solvent extraction and electrorefining. To minimize radiological waste and improve yield, a 'chloride volatility' process--also known as the chlorination and volatilization process (CVP)--has been proposed and demonstrated for processing rare earths. The process takes advantage of the low vapor pressure of rare earth chlorides (<700 >°C), CaCl2 was added to LaCl3 to lower the melting temperature. LaCl3 electrochemical behavior has not previously been studied in CaCl2. Cyclic voltammetry (CV) and square wave voltammetry (SWV) were applied to LaCl3 salts in CaCl2-LiCl and CaCl2 to study the metal ion behavior. Various electrode materials were compared at low CV scan rates (s-1) to determine compatibility with chlorine gas evolution. Experiments of eutectic LaCl3-CaCl2 were performed and analyzed to determine the efficacy of chlorine gas generation via electrolysis for the CVP. Through galvanostatic electrolysis, oxidation of chloride ions and subsequent chlorination of rare earth was demonstrated, with cerium chosen as the representative rare earth metal. Through a quadrupole mass spectrometer plumbed in line with the electrolytic cell, the quality of the generated gas was analyzed.
107

Integrated Study of Rare Earth Drawdown by Electrolysis for Molten Salt Recycle

Wu, Evan January 2017 (has links)
No description available.
108

Uptake of short-chain alcohols by sulfuric acid solutions using raman and vibrational sum frequency spectroscopies, and atmospheric implications

Van Loon, Lisa Lauralene 27 March 2007 (has links)
No description available.
109

A computational model for the diffusion coefficients of DNA with applications

Li, Jun, 1977- 07 October 2010 (has links)
The sequence-dependent curvature and flexibility of DNA is critical for many biochemically important processes. However, few experimental methods are available for directly probing these properties at the base-pair level. One promising way to predict these properties as a function of sequence is to model DNA with a set of base-pair parameters that describe the local stacking of the different possible base-pair step combinations. In this dissertation research, we develop and study a computational model for predicting the diffusion coefficients of short, relatively rigid DNA fragments from the sequence and the base-pair parameters. We focus on diffusion coefficients because various experimental methods have been developed to measure them. Moreover, these coefficients can also be computed numerically from the Stokes equations based on the three-dimensional shape of the macromolecule. By comparing the predicted diffusion coefficients with experimental measurements, we can potentially obtain refined estimates of various base-pair parameters for DNA. Our proposed model consists of three sub-models. First, we consider the geometric model of DNA, which is sequence-dependent and controlled by a set of base-pair parameters. We introduce a set of new base-pair parameters, which are convenient for computation and lead to a precise geometric interpretation. Initial estimates for these parameters are adapted from crystallographic data. With these parameters, we can translate a DNA sequence into a curved tube of uniform radius with hemispherical end caps, which approximates the effective hydrated surface of the molecule. Second, we consider the solvent model, which captures the hydrodynamic properties of DNA based on its geometric shape. We show that the Stokes equations are the leading-order, time-averaged equations in the particle body frame assuming that the Reynolds number is small. We propose an efficient boundary element method with a priori error estimates for the solution of the exterior Stokes equations. Lastly, we consider the diffusion model, which relates our computed results from the solvent model to relevant measurements from various experimental methods. We study the diffusive dynamics of rigid particles of arbitrary shape which often involves arbitrary cross- and self-coupling between translational and rotational degrees of freedom. We use scaling and perturbation analysis to characterize the dynamics at time scales relevant to different classic experimental methods and identify the corresponding diffusion coefficients. In the end, we give rigorous proofs for the convergence of our numerical scheme and show numerical evidence to support the validity of our proposed models by making comparisons with experimental data. / text
110

Diffusion dans un hydrogel : applications aux biocapteurs et optimisation de la technique de spectroscopie par corrélation de fluorescence (FCS)

Gendron, Pierre-Olivier January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Page generated in 0.1416 seconds