• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Statistics for diffusion processes with low and high-frequency observations

Chorowski, Jakub 11 November 2016 (has links)
Diese Dissertation betrachtet das Problem der nichtparametrischen Schätzung der Diffusionskoeffizienten eines ein-dimensionalen und zeitlich homogenen Itô-Diffusionsprozesses. Dabei werden verschiedene diskrete Sampling Regimes untersucht. Im ersten Teil zeigen wir, dass eine Variante des von Gobet, Hoffmann und Reiß konstruierten Niedrigfrequenz-Schätzers auch im Fall von zufälligen Beobachtungszeiten verwendet werden kann. Wir beweisen, dass der Schätzer optimal im Minimaxsinn und adaptiv bezüglich der Verteilung der Beobachtungszeiten ist. Außerdam wenden wir die Lepski Methode an um einen Schätzer zu erhalten, der zusätzlich adaptiv bezüglich der Sobolev-Glattheit des Drift- und Volatilitätskoeffizienten ist. Im zweiten Teil betrachten wir das Problem der Volatilitätsschätzung für äquidistante Beobachtungen. Im Fall eines stationären Prozesses, mit kompaktem Zustandsraum, erhalten wir einen Schätzer, der sowohl bei hochfrequenten als auch bei niedrigfrequenten Beobachtungen die optimale Minimaxrate erreicht. Die Konstruktion des Schätzers beruht auf spektralen Methoden. Im Fall von niedrigfrequenten Beobachtungen ist die Analyse des Schätzers ähnlich wie diejenige in der Arbeit von Gobet, Hoffmann und Reiß. Im hochfrequenten Fall hingegen finden wir die Konvergenzraten durch lokale Mittelwertbildung und stellen daubt eine Verbindung zum Hochfrequenzschätzer von Florens-Zmirou her. In der Analyse unseres universalen Schätzers benötigen wir scharfe obere Schranken für den Schätzfehler von Funktionalen der Occupation time für unstetige Funktionen. Wir untersuchen eine auf Riemannsummen basierende Approximation der Occupation time eines stationären, reversiblen Markov-Prozesses und leiten obere Schranken für den quadratischen Fehler her. Im Fall von Diffusionsprozessen erhalten wir Konvergenzraten für Sobolev Funktionen. / In this thesis, we consider the problem of nonparametric estimation of the diffusion coefficients of a scalar time-homogeneous Itô diffusion process from discrete observations under various sampling assumptions. In the first part, the low-frequency estimation method proposed by Gobet, Hoffmann and Reiß is modified to cover the case of random sampling times. The estimator is shown to be optimal in the minimax sense and adaptive to the sampling distribution. Moreover, Lepski''s method is applied to adapt to the unknown Sobolev smoothness of the drift and volatility coefficients. In the second part, we address the problem of volatility estimation from equidistant observations without a predefined frequency regime. In the case of a stationary diffusion with compact state space and boundary reflection, we introduce a universal estimator that attains the minimax optimal convergence rates for both low and high-frequency observations. Being based on the spectral method, the low-frequency analysis is similar to the study conducted by Gobet, Hoffmann and Reiß. On the other hand, the derivation of the convergence rates in the high-frequency regime requires local averaging of the low-frequency estimator, which makes it mimic the behaviour of the classical high-frequency estimator introduced by Florens-Zmirou. The analysis of the universal estimator requires tight upper bounds on the estimation error of the occupation time functional for non-continuous functions. In the third part of the thesis, we thus consider the Riemann sum approximation of the occupation time functional of a stationary, time-reversible Markov process. Upper bounds on the squared mean estimation error are provided. In the case of diffusion processes, convergence rates for Sobolev regular functions are obtained.
2

Conditional limit theorems for multitype branching processes and illustration in epidemiological risk analysis

Pénisson, Sophie January 2010 (has links)
This thesis is concerned with the issue of extinction of populations composed of different types of individuals, and their behavior before extinction and in case of a very late extinction. We approach this question firstly from a strictly probabilistic viewpoint, and secondly from the standpoint of risk analysis related to the extinction of a particular model of population dynamics. In this context we propose several statistical tools. The population size is modeled by a branching process, which is either a continuous-time multitype Bienaymé-Galton-Watson process (BGWc), or its continuous-state counterpart, the multitype Feller diffusion process. We are interested in different kinds of conditioning on non-extinction, and in the associated equilibrium states. These ways of conditioning have been widely studied in the monotype case. However the literature on multitype processes is much less extensive, and there is no systematic work establishing connections between the results for BGWc processes and those for Feller diffusion processes. In the first part of this thesis, we investigate the behavior of the population before its extinction by conditioning the associated branching process X_t on non-extinction (X_t≠0), or more generally on non-extinction in a near future 0≤θ<∞ (X_{t+θ}≠0), and by letting t tend to infinity. We prove the result, new in the multitype framework and for θ>0, that this limit exists and is non-degenerate. This reflects a stationary behavior for the dynamics of the population conditioned on non-extinction, and provides a generalization of the so-called Yaglom limit, corresponding to the case θ=0. In a second step we study the behavior of the population in case of a very late extinction, obtained as the limit when θ tends to infinity of the process conditioned by X_{t+θ}≠0. The resulting conditioned process is a known object in the monotype case (sometimes referred to as Q-process), and has also been studied when X_t is a multitype Feller diffusion process. We investigate the not yet considered case where X_t is a multitype BGWc process and prove the existence of the associated Q-process. In addition, we examine its properties, including the asymptotic ones, and propose several interpretations of the process. Finally, we are interested in interchanging the limits in t and θ, as well as in the not yet studied commutativity of these limits with respect to the high-density-type relationship between BGWc processes and Feller processes. We prove an original and exhaustive list of all possible exchanges of limit (long-time limit in t, increasing delay of extinction θ, diffusion limit). The second part of this work is devoted to the risk analysis related both to the extinction of a population and to its very late extinction. We consider a branching population model (arising notably in the epidemiological context) for which a parameter related to the first moments of the offspring distribution is unknown. We build several estimators adapted to different stages of evolution of the population (phase growth, decay phase, and decay phase when extinction is expected very late), and prove moreover their asymptotic properties (consistency, normality). In particular, we build a least squares estimator adapted to the Q-process, allowing a prediction of the population development in the case of a very late extinction. This would correspond to the best or to the worst-case scenario, depending on whether the population is threatened or invasive. These tools enable us to study the extinction phase of the Bovine Spongiform Encephalopathy epidemic in Great Britain, for which we estimate the infection parameter corresponding to a possible source of horizontal infection persisting after the removal in 1988 of the major route of infection (meat and bone meal). This allows us to predict the evolution of the spread of the disease, including the year of extinction, the number of future cases and the number of infected animals. In particular, we produce a very fine analysis of the evolution of the epidemic in the unlikely event of a very late extinction. / Diese Arbeit befasst sich mit der Frage des Aussterbens von Populationen verschiedener Typen von Individuen. Uns interessiert das Verhalten vor dem Aussterben sowie insbesondere im Falle eines sehr späten Aussterbens. Wir untersuchen diese Fragestellung zum einen von einer rein wahrscheinlichkeitstheoretischen Sicht und zum anderen vom Standpunkt der Risikoanalyse aus, welche im Zusammenhang mit dem Aussterben eines bestimmten Modells der Populationsdynamik steht. In diesem Kontext schlagen wir mehrere statistische Werkzeuge vor. Die Populationsgröße wird entweder durch einen zeitkontinuierlichen mehrtyp-Bienaymé-Galton-Watson Verzweigungsprozess (BGWc) oder durch sein Analogon mit kontinuierlichem Zustandsraum, den Feller Diffusionsprozess, modelliert. Wir interessieren uns für die unterschiedlichen Arten auf Überleben zu bedingen sowie für die hierbei auftretenden Gleichgewichtszustände. Diese Bedingungen wurden bereits weitreichend im Falle eines einzelnen Typen studiert. Im Kontext von mehrtyp-Verzweigungsprozessen hingegen ist die Literatur weniger umfangreich und es gibt keine systematischen Arbeiten, welche die Ergebnisse von BGWc Prozessen mit denen der Feller Diffusionsprozesse verbinden. Wir versuchen hiermit diese Lücke zu schliessen. Im ersten Teil dieser Arbeit untersuchen wir das Verhalten von Populationen vor ihrem Aussterben, indem wir das zeitasymptotysche Verhalten des auf Überleben bedingten zugehörigen Verzweigungsprozesses (X_t|X_t≠0)_t betrachten (oder allgemeiner auf Überleben in naher Zukunft 0≤θ<∞, (X_t|X_{t+θ}≠0)_t). Wir beweisen das Ergebnis, neuartig im mehrtypen Rahmen und für θ>0, dass dieser Grenzwert existiert und nicht-degeneriert ist. Dies spiegelt ein stationäres Verhalten für auf Überleben bedingte Bevölkerungsdynamiken wider und liefert eine Verallgemeinerung des sogenannten Yaglom Grenzwertes (welcher dem Fall θ=0 entspricht). In einem zweiten Schritt studieren wir das Verhalten der Populationen im Falle eines sehr späten Aussterbens, welches wir durch den Grenzübergang auf θ→∞ erhalten. Der resultierende Grenzwertprozess ist ein bekanntes Objekt im eintypen Fall (oftmals als Q-Prozess bezeichnet) und wurde ebenfalls im Fall von mehrtyp-Feller-Diffusionsprozessen studiert. Wir untersuchen den bisher nicht betrachteten Fall, in dem X_t ein mehrtyp-BGWc Prozess ist und beweisen die Existenz des zugehörigen Q-Prozesses. Darüber hinaus untersuchen wir seine Eigenschaften einschließlich der asymptotischen und weisen auf mehrere Auslegungen hin. Schließlich interessieren wir uns für die Austauschbarkeit der Grenzwerte in t und θ, und die Vertauschbarkeit dieser Grenzwerte in Bezug auf die Beziehung zwischen BGWc und Feller Prozessen. Wir beweisen die Durchführbarkeit aller möglichen Grenzwertvertauschungen (Langzeitverhalten, wachsende Aussterbeverzögerung, Diffusionslimit). Der zweite Teil dieser Arbeit ist der Risikoanalyse in Bezug auf das Aussterben und das sehr späte Aussterben von Populationen gewidmet. Wir untersuchen ein Modell einer verzweigten Bevölkerung (welches vor allem im epidemiologischen Rahmen erscheint), für welche ein Parameter der Reproduktionsverteilung unbekannt ist. Wir konstruieren Schätzer, die an die jeweiligen Stufen der Evolution adaptiert sind (Wachstumsphase, Verfallphase sowie die Verfallphase, wenn das Aussterben sehr spät erwartet wird), und beweisen zudem deren asymptotische Eigenschaften (Konsistenz, Normalverteiltheit). Im Besonderen bauen wir einen für Q-Prozesse adaptierten kleinste-Quadrate-Schätzer, der eine Vorhersage der Bevölkerungsentwicklung im Fall eines sehr späten Aussterbens erlaubt. Dies entspricht dem Best- oder Worst-Case-Szenario, abhängig davon, ob die Bevölkerung bedroht oder invasiv ist. Diese Instrumente ermöglichen uns die Betrachtung der Aussterbensphase der Bovinen spongiformen Enzephalopathie Epidemie in Großbritannien. Wir schätzen den Infektionsparameter in Bezug auf mögliche bestehende Quellen der horizontalen Infektion nach der Beseitigung des primären Infektionsweges (Tiermehl) im Jahr 1988. Dies ermöglicht uns eine Vorhersage des Verlaufes der Krankheit inklusive des Jahres des Aussterbens, der Anzahl von zukünftigen Fällen sowie der Anzahl infizierter Tiere. Insbesondere ermöglicht es uns die Erstellung einer sehr detaillierten Analyse des Epidemieverlaufs im unwahrscheinlichen Fall eines sehr späten Aussterbens.
3

Cellular automaton models for time-correlated random walks: derivation and analysis

Nava-Sedeño, Josue Manik, Hatzikirou, Haralampos, Klages, Rainer, Deutsch, Andreas 05 June 2018 (has links) (PDF)
Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is “data-driven”. Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
4

Cellular automaton models for time-correlated random walks: derivation and analysis

Nava-Sedeño, Josue Manik, Hatzikirou, Haralampos, Klages, Rainer, Deutsch, Andreas 05 June 2018 (has links)
Many diffusion processes in nature and society were found to be anomalous, in the sense of being fundamentally different from conventional Brownian motion. An important example is the migration of biological cells, which exhibits non-trivial temporal decay of velocity autocorrelation functions. This means that the corresponding dynamics is characterized by memory effects that slowly decay in time. Motivated by this we construct non-Markovian lattice-gas cellular automata models for moving agents with memory. For this purpose the reorientation probabilities are derived from velocity autocorrelation functions that are given a priori; in that respect our approach is “data-driven”. Particular examples we consider are velocity correlations that decay exponentially or as power laws, where the latter functions generate anomalous diffusion. The computational efficiency of cellular automata combined with our analytical results paves the way to explore the relevance of memory and anomalous diffusion for the dynamics of interacting cell populations, like confluent cell monolayers and cell clustering.
5

Drift estimation for jump diffusions

Mai, Hilmar 08 October 2012 (has links)
Das Ziel dieser Arbeit ist die Entwicklung eines effizienten parametrischen Schätzverfahrens für den Drift einer durch einen Lévy-Prozess getriebenen Sprungdiffusion. Zunächst werden zeit-stetige Beobachtungen angenommen und auf dieser Basis eine Likelihoodtheorie entwickelt. Dieser Schritt umfasst die Frage nach lokaler Äquivalenz der zu verschiedenen Parametern auf dem Pfadraum induzierten Maße. Wir diskutieren in dieser Arbeit Schätzer für Prozesse vom Ornstein-Uhlenbeck-Typ, Cox-Ingersoll-Ross Prozesse und Lösungen linearer stochastischer Differentialgleichungen mit Gedächtnis im Detail und zeigen starke Konsistenz, asymptotische Normalität und Effizienz im Sinne von Hájek und Le Cam für den Likelihood-Schätzer. In Sprungdiffusionsmodellen ist die Likelihood-Funktion eine Funktion des stetigen Martingalanteils des beobachteten Prozesses, der im Allgemeinen nicht direkt beobachtet werden kann. Wenn nun nur Beobachtungen an endlich vielen Zeitpunkten gegeben sind, so lässt sich der stetige Anteil der Sprungdiffusion nur approximativ bestimmen. Diese Approximation des stetigen Anteils ist ein zentrales Thema dieser Arbeit und es wird uns auf das Filtern von Sprüngen führen. Der zweite Teil dieser Arbeit untersucht die Schätzung der Drifts, wenn nur diskrete Beobachtungen gegeben sind. Dabei benutzen wir die Likelihood-Schätzer aus dem ersten Teil und approximieren den stetigen Martingalanteil durch einen sogenannten Sprungfilter. Wir untersuchen zuerst den Fall endlicher Aktivität und zeigen, dass die Driftschätzer im Hochfrequenzlimes die effiziente asymptotische Verteilung erreichen. Darauf aufbauend beweisen wir dann im Falle unendlicher Sprungaktivität asymptotische Effizienz für den Driftschätzer im Ornstein-Uhlenbeck Modell. Im letzten Teil werden die theoretischen Ergebnisse für die Schätzer auf endlichen Stichproben aus simulierten Daten geprüft und es zeigt sich, dass das Sprungfiltern zu einem deutlichen Effizienzgewinn führen. / The problem of parametric drift estimation for a a Lévy-driven jump diffusion process is considered in two different settings: time-continuous and high-frequency observations. The goal is to develop explicit maximum likelihood estimators for both observation schemes that are efficient in the Hájek-Le Cam sense. The likelihood function based on time-continuous observations can be derived explicitly for jump diffusion models and leads to explicit maximum likelihood estimators for several popular model classes. We consider Ornstein-Uhlenbeck type, square-root and linear stochastic delay differential equations driven by Lévy processes in detail and prove strong consistency, asymptotic normality and efficiency of the likelihood estimators in these models. The appearance of the continuous martingale part of the observed process under the dominating measure in the likelihood function leads to a jump filtering problem in this context, since the continuous part is usually not directly observable and can only be approximated and the high-frequency limit. In the second part of this thesis the problem of drift estimation for discretely observed processes is considered. The estimators are constructed from discretizations of the time-continuous maximum likelihood estimators from the first part, where the continuous martingale part is approximated via a thresholding technique. We are able to proof that even in the case of infinite activity jumps of the driving Lévy process the estimator is asymptotically normal and efficient under weak assumptions on the jump behavior. Finally, the finite sample behavior of the estimators is investigated on simulated data. We find that the maximum likelihood approach clearly outperforms the least squares estimator when jumps are present and that the efficiency gap between both techniques becomes even more severe with growing jump intensity.

Page generated in 0.098 seconds