691 |
USO DE BIODIGESTOR ANAERÓBIO NO TRATAMENTO DE RESÍDUO ORGÂNICO DE RESTAURANTE / USE OF ANAEROBIC BIODIGESTER IN THE TREATMENT OF RESTAURANT ORGANIC WASTEGranzotto, Fabiane 18 July 2016 (has links)
The generation of local solid waste has increased every year in Brazil. The largest portion of this waste is organic material. Organic waste generated in restaurants in the preparation of meals, as much as in the leftovers on the plates plays an important role in the composition of this type of waste and needs to be properly allocated. In the present study, the generation of biogas and bio compounds in the use of restaurant organic waste was evaluated, in an anaerobic digester. To achieve this, an anaerobic reactor of 120 L was used, which was operated and monitored from August 2015 to April 2016. The anaerobic digestion was conducted at mesophilic temperature close to 30 °C and at different hydraulic retention times of 30 and 60 days. Initially, the pH of the affluent varied from 4.8 to 6.4 performing in most cases as acid; therefore it was necessary to correct the incoming biomass with NaOH. The major physic-chemical factors which influenced in the process and the biogas composition (CH4 and CO2) were evaluated. The stable phase was identified and the removal efficiency of main physic-chemical parameters was verified during this stable period. The pH of the effluent on stage II varied from 6.2 to 7.3. The average COD removal was 95 %, BOD5, 93%, O&G, 86 %, ST, 51 %, SS, 92 % and STV, 76 %. The percentage of CH4 in phase II was 60 % and 40 % of CO2. During the period in which the digester was operated and evaluated the amount of 203 kg of restaurant organic waste was properly allocated, 633 L of water were used and 830 L of bio compounds were generated. The total volume of biogas followed in March and April 2016 was 3311.72 L and the estimated total volume for methane was 2123.24 L, in a range of daily variation biogas production from March to April of 41.2 L to 80.0 L. The study found that with the acclimatization of microorganisms was possible to obtain positive percentage of methane generation indicating that anaerobic digestion, for this type of waste used, is viable and it has good potential for use, in addition of generating gases production with potential energy and sludge with potential use in fertilization. / A geração de resíduos sólidos urbanos tem aumentado a cada ano, no Brasil. A maior parcela desses resíduos é de material orgânico. Os resíduos orgânicos gerados nos restaurantes, tanto do preparo das refeições, quanto das sobras nos pratos, tem participação importante na composição dos resíduos sólidos urbanos e precisam ser melhor destinados. No presente trabalho foi avaliada a geração de biogás e biocomposto através da utilização de resíduo orgânico de restaurante, em biodigestor anaeróbio. Para tanto foi utilizado um reator anaeróbio de 120 L, o qual foi operado e monitorado de agosto de 2015 a abril de 2016. A digestão anaeróbia foi realizada em temperatura mesófila, próxima de 30 °C e conduzida a diferentes tempos de retenção hidráulico de 30 e 60 dias. Inicialmente o pH do afluente variou entre 4,8 a 6,4 apresentando-se na maioria das vezes como ácido, por isso foi necessário corrigir a biomassa de entrada com NaOH. Foram avaliados os principais fatores físico-químicos que influenciavam no processo e a composição do biogás (CH4 e CO2). Foi identificada a fase estável e verificada a eficiência de remoção dos principais parâmetros físico-químicos avaliados durante este período estável. O pH do efluente na fase II variou de 6,2 a 7,3. A média de remoção de DQO foi de 95 %, da DBO5 foi de 93 %, dos O&G foi de 86 %, dos ST foi de 51 %, dos SS foi de 92 % e dos STV foi de 76 %. O percentual médio de CH4 na fase II foi de 60 % e o de CO2 de 40 %. Durante o período em que o biodigestor foi operado e avaliado foi mais bem destinada uma quantidade de 203 kg de resíduo orgânico de restaurante, foram utilizados 756 L de água e foram gerados 950 L de biocomposto. O volume total do biogás, acompanhado nos meses de março e abril de 2016, foi de 3311,72 L e o volume total estimado para o metano foi de 2123,24 L, sendo que a faixa de variação diária de produção do biogás de março a abril foi de 41,2 L a 80,0 L. O estudo apontou que com a aclimatação dos micro-organismos foi possível obter bons percentuais de geração de metano indicando que a digestão anaeróbia, para este tipo de resíduo utilizado é viável e tem bom potencial de uso, além de gerar gases com potenciais energéticos e lodo com potencial para uso em fertilização.
|
692 |
Pilot-scale anaerobic digestion of municipal biowaste with thermal hydrolysis pre-treatment / 水熱前処理を用いた有機性廃棄物のパイロット-スケール嫌気性消化に関する研究Zhou, Yingjun 25 March 2013 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第17542号 / 工博第3701号 / 新制||工||1563(附属図書館) / 30308 / 京都大学大学院工学研究科都市環境工学専攻 / (主査)教授 高岡 昌輝, 教授 田中 宏明, 教授 米田 稔 / 学位規則第4条第1項該当
|
693 |
Hydrodynamic cavitation applied to anaerobic degradation of fats, oils and greases (FOGs)Lunnbäck, Johan January 2016 (has links)
To increase profitability for biogas production, new innovative substrates and condition of operations needs to be implemented. At the current state, fats, oils and greases (FOGs) represent a promising substrate even though it brings operational challenges to the anaerobic digestion process. By utilizing hydrodynamic cavitation (HC) as a pre-treatment of the FOGs, the efficiency of FOGs’ co-digestion with wastewater sludge can be significantly improved. Preliminary experiments conducted on oil and water demonstrates that the HC pre-treatment improves the oil solubilisation as well as forms stable oil and water emulsion that last for several hours. The pre-treatment also improved the soluble chemical oxygen demand (COD) of biosludge (BiSl) by up to 115% and the initial degradation rate by up to 35%. In a semi-continues system, this allowed a significant increment in the specific methane yield depending on the organic loading rate (OLR) applied1. With sufficient process optimization, the HC-pre-treatment may prove to be an energy efficient and effective pre-treatment of FOGs.
|
694 |
Biogas production potential and cost-benefit analysis of harvesting wetland plants (Phragmites australis and Glyceria maxima).Gilson, Eoin January 2017 (has links)
Biogas production from energy crops grown on arable land often competes with food and feed production. Wetland plants offer an alternative source of biomass as well as offering a number of environmental benefits such as nutrient removal from wastewaters, carbon sequestration and reducing the use of mineral fertilizer. The aim of this study is to investigate the effect of harvest time on biogas production of Phragmites australis and Glyceria maxima and to perform a cost-benefit analysis of using these wetland plants as a substrate for biogas production. The results of the batch experiment show that the overall biogas production and specific methane yields of biomass harvested in June was higher than biomass harvested in September due the increased lignocellulosic nature of the more mature September plant. The cost-benefit showed that in Sweden it is not currently profitable to solely use wetland plants for biogas production. For both species the highest costs were seen in the June harvested biomass, this was due to the much higher fresh weight and increased transportation costs. For both species the highest revenues generated were the June harvested biomass, this was due to the higher specific methane yields. It was found that the harvest time that was closest to profitability from both species was the June harvest for Phragmites australis. Although the costs were higher for harvesting in June, this was outweighed by the higher amount of electricity produced for this scenario. If transportation distance was to be increased it could result in September being the favourable harvest time. Therefore, individual circumstances of the farmers could decide which is the optimal harvest time. Although solely using wetland plants for biogas production is not currently profitable, co-digestion and pre-treatment are options to investigate that could change this. Also if a greater financial value is put on the socioeconomic benefits such as increased biodiversity, aesthetic value and global warming mitigation it may be financially viable in the future.
|
695 |
Desintegration und anaerobe Verwertung bioabbaubarer BiokunststoffeGrundmann, Veit 04 January 2016 (has links) (PDF)
Das Ziel dieser Arbeit ist es biobasierte, bioabbaubare Biokunststoffe mit einfacher Prozesstechnik zu desintegrieren und für anaerobe Mikroorganismen verfügbar zu machen. Mittels der Ergebnisse der Untersuchungen soll nachgewiesen werden, dass eine anaerobe Verwertung der desintegrierten Biokunststoffe bzw. der generierten Flüssigkeiten möglich ist. Außerdem soll ermittelt werden, welches energetische Potenzial dabei freigesetzt wird. Im Rahmen einer Wirtschaftlichkeitsbetrachtung wird die Implementierung einer Desintegrationsstufe in einer Vergärungsanlage bewertet.
Zu Beginn der Untersuchungen wird festgestellt, dass eine anaerobe Verwertung im mesophilen und im thermophilen Bereich nur unzureichend realisierbar ist. In den anschließenden Untersuchungen werden Maßnahmen zur Beschleunigung der Desintegration von zertifizierten bioabbaubaren Biokunststoffen untersucht.
Nachdem ein Nachweis der Desintegration verschiedener Biokunststoffe erbracht und aus-reichend hohe Gehalte gelöster Organik nachgewiesen werden, erfolgt im Anschluss die anaerobe Verwertung der erzeugten Flüssigkeiten in einer mesophilen, kontinuierlichen Vergärung.
Die Gärtests geben Aufschluss über die Vergärbarkeit, das Biogaspotenzial, die Biogasqualität und die Abbaugrade der desintegrierten Biokunststoffe. Der höchste Abbaugrad (71,3 %) wird bei der Untersuchung der Flüssigkeiten der Ecovio®-Biobeutel erreicht. Der Abbau der Activia®-Becher (39,6 %) verlief weniger effizient und wird durch hohe Gehalte organischer Säuren und Verdünnungseffekte beeinflusst. Die real erzeugten Biogaspotenziale schwanken zwischen 0,1 lN CH4/g CSB und 0,23 lN CH4/g CSB. Die Biogasqualität während der Versuche ist sehr gut. Die Verhältnisse von CH4 zu CO2 liegen überwiegend zwischen 50:50 und 60:40.
Der Nachweis der energetischen Nutzbarmachung der desintegrierten Biokunststoffe für den mikrobiellen Umsatz bzw. zur Biogasbildung wird erbracht.
Die Implementierung einer Desintegrationsstufe in eine bestehende Vergärungsanlage wird im Hinblick auf die Wirtschaftlichkeit bewertet. Die Implementierung ist technisch realisierbar. Die Kosten der Implementierung übersteigen die Erlöse um ein Vielfaches. Auch bei längeren Betrachtungszeiträumen kann kein Gewinn erwirtschaftet werden.
|
696 |
Enzymology of activated sewage sludge during anaerobic treatment of wastewaters : identification, characterisation, isolation and partial purification of proteasesTshivhunge, Azwiedziswi Sylvia January 2001 (has links)
During anaerobic digestion bacteria inside the digester require a carbon source for their growth and metabolism, sewage sludge was used as a carbon source in this study. The COD content was used to measure the disappearance of the substrate. COD content was reduced by 48.3% and 49% in the methanogenic and sulphidogenic bioreactors, respectively, while sulphate concentration was reduced by 40%, producing 70mg/L of hydrogen sulphide as the end product over the first 5-7 days. Sulphate (which is used as a terminal electron acceptor of sulphur reducing bacteria) has little or no effect on the sulphidogenic and methanogenic proteases. Sulphite and sulphide (the intermediate and end product of sulphate reduction) increased protease activity by 20% and 40%-80%, respectively. Maximum protease activity occurred on day 21 in the methanogenic reactor and on day 9 in the sulphidogenic reactor. The absorbance, which indicates the level of amino acid increased to 2 and 9 for methanogenic and sulphidogenic bioreactors, respectively. Proteases that were active during anaerobic digestion were associated with the pellet (organic particulate matter) of the sewage. These enzymes have an optimum activity at pH 10 and at temperature of 50°C. The proteases that were active at pH 5 and 7, had optimum temperatures at 30°C and 60°C, respectively. Due to their association with organic particulate matter, these enzymes were stable at their optimum temperatures for at least five hours at their respective pH. Inhibition by PMSF, TPCK and 1.10-phenanthroline suggested that proteases inside the anaerobic digester are a mixture of cysteine, serine and metalloproteases. At pH 5, however, EDTA appeared to enhance protease activity by 368% (three-fold). Acetic acid decreased protease activity by 21%, while both propionic and butyric acid at 200 mg/L cause total inhibition of protease activity while these acids at higher pH (where they exist as their corresponding salts) exerted little effect. Copper, iron and zinc inhibited protease activity by 85% at pH 5 with concentrations ranging between 200 and 600 mg/L. On the other hand, nickel, showed an increase in protease activity of nearly 250%. At pH 7 and 10, copper had no effect on protease activity while iron, nickel and zinc inhibited these enzymes by 20-40%. Proteases at pH 7 were extracted from the pellet by sonication, releasing 50% of the total enzymes into the solution. The enzymes were precipitated by ammonium sulphate precipitation, and further purified by ion exchange chromatography and gel filtration. Ion exchange chromatography revealed that most of the enzymes that hydrolyse proteins are negatively charged while gel filtration showed that their molecular weight is approximately 500 kDa.
|
697 |
Starch digestibility of porridges from unrefined and refined maize, pearl millet and sorghumKundi, Salvatory Theobald 05 October 2005 (has links)
Please read the abstract in the section 00front of this document / Dissertation (MSc (Food Science))--University of Pretoria, 2006. / Food Science / unrestricted
|
698 |
Controlled wet-chemical dissolution of simulated high-temperature reactor coated fuel particlesSkolo, Kholiswa Patricia 28 November 2012 (has links)
High-temperature reactors make use of tri-structural coated fuel particles as basic fuel components. These TRISO particles consist of fissionable uranium dioxide fuel kernels, about 0.5 mm in diameter, with each kernel individually encased in four distinct coating layers, starting with a porous carbon buffer, then an inner pyrolytic carbon (IPyC) layer, followed by a layer of ceramic silicon carbide (SiC) and finally an outer pyrolytic carbon layer (OPyC). Collectively, the coating layers provide the primary barrier that prevents release of fission products generated during burn up in the UO2 fuel kernel. It is crucial to understand how the fission products contained within the fuel interact with the coating layers and how they are distributed within the fuel. The first step commonly performed to obtain the information on distribution is removal of the coating layers. The purpose of this study was to investigate the possible use of wet chemical etching techniques with the aim of removing the coating layers of ZrO2 coated fuel particles in a controlled way and to establish experimental parameters for controlled dissolution of irradiated fuel particles. Stepwise dissolution of coated fuel particle coating layers, containing zirconia kernels has been investigated by chemical etching experiments with acidic solutions of different mixtures. The heating methods used include heating by conventional methods, hot plates and a muffle furnace, a reflux-heating system and microwave-assisted digestion. The etching mixtures were prepared from a number of oxidizing acids and other dehydrating agents. The capability of each reagent to etch the layer completely and in a controlled manner was examined. On etching the first layer, the OPyC, the reflux heating method gave the best results in removing the layer, its advantage being that the reaction can be carried out at temperatures of about 130 ºC for a long time without the loss of the acid. The experimental results demonstrated that a mixture composed of equal amounts of concentrated nitric and sulfuric acid mixed with chromium trioxide dissolves the OPyC layer completely. The most favourable experimental conditions for removal of OPyC from a single coated fuel particle were identified and found to depend on the etching solution composition and etching temperature. Light microscopy yielded first-hand information on the surface features of the samples. It allowed fast comparison of etched and untreated sample features. The outer surface of particles prior to chemical etching of the outer pyrolytic carbon layer appeared black in colour with an even surface compared to the etched surfaces which appeared to have an uneven metallic grey, shiny texture. The scanning electron microscope (SEM) examination of the chemically treated outer carbon layer samples gave information on the microstructure and it demonstrated that the outer pyrolytic carbon layer could be readily removed using a solution of HNO3/H2SO4/CrO3, leaving the exposed SiC layer. Complete removal of the layer was confirmed by energy dispersive X-ray spectroscopic (EDS) analysis of the particle surface. For etching the second layer, the silicon carbide layer, microwave-assisted chemical etching was the only heating technique found to be useful. However, experimental results demonstrated that this method has limited ability to digest the sample completely. Also common chemical etchants were found to be ineffective for dissolving this layer. Only fluoride containing substances showed the potential to etch the layer. The results show that a mixture consisting of equal amounts of concentrated hydrofluoric and nitric acid under microwave heating at 200 ºC yielded partial removal of the coating and localized attack of the underlying coating layers. The SEM analyses at different intervals of etching showed: partial removal of the layer, attack of the underlying layers and, in some instances, that attack started at grain boundaries and progressed to the intra-granular features. The SEM results provide evidence that etching of the silicon carbide layer is strongly influenced by its microstructure. From these findings, it is concluded that etching of the silicon carbide under the investigated experimental conditions yields undesirable results and that it does not provide complete removal of the layer. This method has the potential to etch the layer to some extent but has limitations. Copyright / Dissertation (MSc)--University of Pretoria, 2013. / Chemical Engineering / unrestricted
|
699 |
Characterisation of Absorbatox™ as a wound healing agentMncube, Khulekani 10 July 2013 (has links)
Introduction: Chronic wounds are a great burden to care-givers and patients alike and are the main cause of many preventable amputations. Such wounds are treated with wound dressings but providing a wound environment that is conducive to proper wound healing is not always possible with such dressings. Absorbatox™ is a natural zeolite that has been manipulated to increase its cationic exchange capacity and has its main functionality as a potential wound healing agent in its strong capillary action. This quality enables the zeolite to absorb excess wound exudate and thus prevent wound infection and maceration. Absorbatox™ was characterised to determine its effects on wound healing. Methods: The physical characterisation of two grades of Absorbatox™ - granular and micronised - was conducted using nitrogen adsorption to determine pore size and surface area, and laser particle sizing to determine the particle sizes of the Absorbatox™ particles. Full-thickness wounds of 8 x 8 mm were created on the backs of pigs and treated with Absorbatox™, a positive and a negative control. The wound dimensions were measured and recorded. The wounds were then excised on selected days of each phase of wound healing and fixed in formalin. The wound sections were analysed by mass spectrometry imaging and abundant wound proteins were identified from the tryptic digests using BLAST against the Swiss-Prot database. Results: The surface areas of the micronised and granular Absorbatox™ were 14.43 and 11.23 m2/g, respectively. The micronised Absorbatox™ particle sizes ranged between 0.8 µm to approximately 300 µm with an average pore diameter of 28.2 nm. The granular Absorbatox™ particle sizes ranged between 2 µm and 875 µm with average pore diameters of 43.8 nm. Absorbatox™ showed better wound healing by delaying wound contraction and causing more rapid shallowing of the wound depths compared to the negative control. The difference observed in the wound healing rates of the Absorbatox™-treated and positive control groups were statistically significant and the histological evaluations of the wounds treated with Absorbatox™ showed wound closures that were associated with qualities that more closely resembled normal, healthy tissue than the positive control wounds. The protein activity in the trypsin-digested tissue including within the wound area and the surrounding healthy tissue was successfully imaged using MALDI-MSI. BLAST software was used at an e-value of 30 to identify possible proteins from the tryptic digests and were identified as proteins involved in wound healing. Discussion: Micronised Absorbatox™ treated wounds showed more rapid healing than the other treatments most likely due to the smaller particles and pores which results in strong capillary action to absorb excess exudate. Mass spectrometry imaging allowed monitoring of the protein fluctuations that occur during wound healing. The proteins detected were then identified using BLAST and MASCOT database comparison tools which identified that the abundant proteins detected by mass spectrometry were not those typically observed in wound healing but rather those involved in molecular aspects of wound healing like nerve regeneration, cell proliferation, survival, and migration. / Dissertation (MSc)--University of Pretoria / Pharmacology / unrestricted
|
700 |
Enhancement of the Mesophilic Anaerobic Co-digestion of Municipal Sewage and ScumYoung, Bradley January 2012 (has links)
Scum is an integral component of solids management in MWWTP and is composed of fats, oils, grease and other entrained floatable materials that are collected during primary clarification. Lab scale BMP tests showed the addition of 14.5 g VS/L of scum exhibited the greatest increase in biogas production of 1.6 times per g VS added compared to the control, while a higher additional scum loading of 33.7 g VS/L reduced the biogas yield to 32% of the control reactor. Lab scale semi-continuous digestion measured the effects of scum loading and temperature of pretreatment in the scum concentrator. At 15 d and 20 d HRTs the greatest observed improvement in biogas was achieved by adding 3% scum by volume and pretreating the scum at 70°C in a scum concentrator with respective improvements of 24% and 16%.
|
Page generated in 0.1025 seconds