131 |
Développement d’un convertisseur analogique-numérique innovant dans le cadre des projets d’amélioration des systèmes d’acquisition de l’expérience ATLAS au LHC / Development of an innovative analog-digital converter chip in the scope of the upgrade of data acquisition infrastructure of the ATLAS experiment at the LHCZeloufi, Mohamed 09 November 2016 (has links)
À l’horizon 2024, l’expérience ATLAS prévoit de fonctionner à des luminosités 10 fois supérieures à la configuration actuelle. Par conséquent, l’électronique actuelle de lecture ne correspondra pas aux conditions de ces luminosités. Dans ces conditions, une nouvelle électronique devra être conçue. Cette mise à niveau est rendue nécessaire aussi par les dommages causés par les radiations et le vieillissement. Une nouvelle carte frontale va être intégrée dans l’électronique de lecture du calorimètre LAr. Un élément essentiel de cette carte est le Convertisseur Analogique-Numérique (CAN) présentant une résolution de 12bits pour une fréquence d’échantillonnage de 40MS/s, ainsi qu’une résistance aux irradiations. Compte tenu du grand nombre des voies, ce CAN doit remplir des critères sévères sur la consommation et la surface. Le but de cette thèse est de concevoir un CAN innovant qui peut répondre à ces spécifications. Une architecture à approximations successives (SAR) a été choisie pour concevoir notre CAN. Cette architecture bénéficie d’une basse consommation de puissance et d’une grande compatibilité avec les nouvelles technologies CMOS. Cependant, le SAR souffre de certaines limitations liées principalement aux erreurs de décisions et aux erreurs d’appariement des capacités du CNA. Deux prototypes de CAN-SAR 12bits ont été modélisés en Matlab afin d’évaluer leur robustesse. Ensuite les conceptions ont été réalisées dans une technologie CMOS 130nm d’IBM validée par la collaboration ATLAS pour sa tenue aux irradiations. Les deux prototypes intègrent un algorithme d’approximations avec redondance en 14 étapes de conversion, qui permet de tolérer des marges d’erreurs de décisions et d’ajouter une calibration numérique des effets des erreurs d’appariement des capacités. La partie logique de nos CAN est très simplifiée pour minimiser les retards de génération des commandes et la consommation d’énergie. Cette logique exécute un algorithme monotone de commutation des capacités du CNA permettant une économie de 70% de la consommation dynamique par rapport à un algorithme de commutation classique. Grâce à cet algorithme, une réduction de capacité totale est aussi obtenue : 50% en comparant notre premier prototype à un seul segment avec une architecture classique. Pour accentuer encore plus le gain en termes de surface et de consommation, un second prototype a été réalisé en introduisant un CNA à deux segments. Cela a abouti à un gain supplémentaire d’un facteur 7,64 sur la surface occupée, un facteur de 12 en termes de capacité totale, et un facteur de 1,58 en termes de consommation. Les deux CAN consomment respectivement une puissance de ~10,3mW et ~6,5mW, et ils occupent respectivement une surface de ~2,63mm2 et ~0,344mm2.Afin d’améliorer leurs performances, un algorithme de correction numérique des erreurs d’appariement des capacités a été utilisé. Des buffers de tensions de référence ont étés conçus spécialement pour permettre la charge/décharge des capacités du convertisseur en hautes fréquences et avec une grande précision. En simulations électriques, les deux prototypes atteignent un ENOB supérieur à 11bits tout en fonctionnant à la vitesse de 40MS/s. Leurs erreurs d’INL simulés sont respectivement +1,14/-1,1LSB et +1,66/-1,72LSB.Les résultats de tests préliminaires du premier prototype présentent des performances similaires à celles d’un CAN commercial de référence sur notre carte de tests. Après la correction, ce prototype atteint un ENOB de 10,5bits et un INL de +1/-2,18LSB. Cependant suite à une panne de carte de tests, les résultats de mesures du deuxième prototype sont moins précis. Dans ces circonstances, ce dernier atteint un ENOB de 9,77bits et un INL de +7,61/-1,26LSB. En outre la carte de tests actuelle limite la vitesse de fonctionnement à ~9MS/s. Pour cela une autre carte améliorée a été conçue afin d’atteindre un meilleur ENOB, et la vitesse souhaitée. Les nouvelles mesures vont être publiées dans le futur. / By 2024, the ATLAS experiment plan to operate at luminosities 10 times the current configuration. Therefore, many readout electronics must be upgraded. This upgrade is rendered necessary also by the damage caused by years of total radiations’ effect and devices aging. A new Front-End Board (FEB) will be designed for the LAr calorimeter readout electronics. A key device of this board is a radiation hard Analog-to-Digital Converter (ADC) featuring a resolution of 12bits at 40MS/s sampling rate. Following the large number of readout channels, this ADC device must display low power consumption and also a low area to easy a multichannel design.The goal of this thesis is to design an innovative ADC that can deal with these specifications. A Successive Approximation architecture (SAR) has been selected to design our ADC. This architecture has a low power consumption and many recent works has shown his high compatibility with modern CMOS scaling technologies. However, the SAR has some limitations related to decision errors and mismatches in capacitors array.Using Matlab software, we have created the models for two prototypes of 12bits SAR-ADC which are then used to study carefully their limitations, to evaluate their robustness and how it could be improved in digital domain.Then the designs were made in an IBM 130nm CMOS technology that was validated by the ATLAS collaboration for its radiation hardness. The prototypes use a redundant search algorithm with 14 conversion steps allowing some margins with comparator’s decision errors and opening the way to a digital calibration to compensate the capacitors mismatching effects. The digital part of our ADCs is very simplified to reduce the commands generation delays and saving some dynamic power consumption. This logic follows a monotonic switching algorithm which saves about70% of dynamic power consumption compared to the conventional switching algorithm. Using this algorithm, 50% of the total capacitance reduction is achieved when one compare our first prototype using a one segment capacitive DAC with a classic SAR architecture. To boost even more our results in terms of area and consumption, a second prototype was made by introducing a two segments DAC array. This resulted in many additional benefits: Compared to the first prototype, the area used is reduced in a ratio of 7,6, the total equivalent capacitance is divided by a factor 12, and finally the power consumption in improved by a factor 1,58. The ADCs respectively consume a power of ~10,3mW and ~6,5mW, and they respectively occupy an area of ~2,63mm2 and ~0,344mm2.A foreground digital calibration algorithm has been used to compensate the capacitors mismatching effects. A high frequency open loop reference voltages buffers have been designed to allow the high speed and high accuracy charge/discharge of the DAC capacitors array.Following electrical simulations, both prototypes reach an ENOB better than 11bits while operating at the speed of 40MS/s. The INL from the simulations were respectively +1.14/-1.1LSB and +1.66/-1.72LSB.The preliminary testing results of the first prototype are very close to that of a commercial 12bits ADC on our testing board. After calibration, we measured an ENOB of 10,5bits and an INL of +1/-2,18LSB. However, due to a testing board failure, the testing results of the second prototype are less accurate. In these circumstances, the latter reached an ENOB of 9,77bits and an INL of +7,61/-1,26LSB. Furthermore the current testing board limits the operating speed to ~9MS/s. Another improved board was designed to achieve a better ENOB at the targeted 40MS/s speed. The new testing results will be published in the future.
|
132 |
Baseband analog circuits in deep-submicron cmos technologies targeted for mobile multimediaDhanasekaran, Vijayakumar 15 May 2009 (has links)
Three main analog circuit building blocks that are important for a mixed-signal
system are investigated in this work. New building blocks with emphasis on power
efficiency and compatibility with deep-submicron technology are proposed and
experimental results from prototype integrated circuits are presented.
Firstly, a 1.1GHz, 5th order, active-LC, Butterworth wideband equalizer that
controls inter-symbol interference and provides anti-alias filtering for the subsequent
analog to digital converter is presented. The equalizer design is based on a new series
LC resonator biquad whose power efficiency is analytically shown to be better than a
conventional Gm-C biquad. A prototype equalizer is fabricated in a standard 0.18μm
CMOS technology. It is experimentally verified to achieve an equalization gain
programmable over a 0-23dB range, 47dB SNR and -48dB IM3 while consuming 72mW
of power. This corresponds to more than 7 times improvement in power efficiency over
conventional Gm-C equalizers.
Secondly, a load capacitance aware compensation for 3-stage amplifiers is
presented. A class-AB 16W headphone driver designed using this scheme in 130nm technology is experimentally shown to handle 1pF to 22nF capacitive load while
consuming as low as 1.2mW of quiescent power. It can deliver a maximum RMS power
of 20mW to the load with -84.8dB THD and 92dB peak SNR, and it occupies a small
area of 0.1mm2. The power consumption is reduced by about 10 times compared to
drivers that can support such a wide range of capacitive loads.
Thirdly, a novel approach to design of ADC in deep-submicron technology is
described. The presented technique enables the usage of time-to-digital converter (TDC)
in a delta-sigma modulator in a manner that takes advantage of its high timing precision
while noise-shaping the error due to its limited time resolution. A prototype ADC
designed based on this deep-submicron technology friendly architecture was fabricated
in a 65nm digital CMOS technology. The ADC is experimentally shown to achieve
68dB dynamic range in 20MHz signal bandwidth while consuming 10.5mW of power. It
is projected to reduce power and improve speed with technology scaling.
|
133 |
A CMOS analog pulse compressor with a low-power analog-to-digital converter for MIMO radar applicationsLee, Sang Min 10 November 2010 (has links)
Multiple-input multiple-output (MIMO) radars, which utilize multiple transmitters and receivers to send and receive independent waveforms, have been actively investigated as a next generation radar technology inspired by MIMO techniques in communication theory. Complementary metal-oxide-semiconductor (CMOS) technology offers an opportunity for dramatic cost and size reduction for a MIMO array. However, the resulting formidable signal processing burden has not been addressed properly and remains a challenge. On the other hand, from a block-level point of view, an analog-to-digital converter (ADC) is required for mixed-signal processing to convert analog signals to digital signals, but an ADC occupies a significant portion of a system's budget. Therefore, improvement of an ADC will greatly enhance various trade-offs. This research presents an alternative and viable approach for a MIMO array from a system architecture point of view, and also develops circuit level improvement techniques for an ADC.
This dissertation presents a fully-integrated analog pulse compressor (APC) based on an analog matched filter in a mixed signal domain as a key block for the waveform diversity MIMO radar. The performance gain of the proposed system is mathematically presented, and the proposed system is successfully implemented and demonstrated from the block level to the system level using various waveforms. Various figures of merit are proposed to aid system evaluations. This dissertation also presents a low-power ADC based on an asynchronous sample-and-hold multiplying SAR (ASHMSAR) with an enhanced input range dynamic comparator as a key element of a future system. Overall, with the new ADC, a high level of system performance without severe penalty on power consumption is expected.
The research in this dissertation provides low-cost and low-power MIMO solutions for a future system by addressing both system issues and circuit issues comprehensively.
|
134 |
An 8-bit, 12.5GS/s Folding-interpolating Analog-to-digital ConverterGhetmiri, Shohreh 10 August 2009 (has links)
The motivation behind this work is to target the demand for high-speed medium-resolution ADCs for satellite communication systems. An 8-bit, 12.5GS/s folding-interpolating ADC was designed in 0.25µm, 190GHz SiGe BiCMOS technology from IHP. The ADC consists of a THA, a reference resistor ladder, folding amplifiers, an interpolating resistor string, a comparator array, a digital encoder, a coarse quantizer and a bit synchronizer.
Post-layout simulation results of the ADC verify that its performance meets all the required specifications. By comparison to other high-speed ADCs, implemented in SiGe technologies, the present design features the highest sampling rate for 8-bit resolution ADCs to date with a good FOM (12.9pJ/conversion).
The THA and the comparator were implemented experimentally and characterized to verify their performance and to ascertain the possibility of implementing the complete ADC. The experimental results meet the expected specifications and indicate that both circuits are suitable for the implementation of the ADC.
|
135 |
"Analogue Network of Converters": a DfT Technique to Test a Complete Set of ADCs and DACs Embedded in a Complex SiP or SoCKerzerho, Vincent 22 February 2008 (has links) (PDF)
Une nouvelle méthode de test pour les convertisseurs ADC et DAC embarqués dans un système complexe a été développée en prenant en compte les nouvelles contraintes affectant le test. Ces contraintes, dues aux tendances de design de systèmes, sont un nombre réduit de point d'accès aux entrées/sorties des blocs analogiques du système et une augmentation galopante du nombre et des performances des convertisseurs intégrés. La méthode proposée consiste à connecter les convertisseurs DAC et ADC dans le domaine analogique pour n'avoir besoin que d'instruments de test numériques pour générer et capturer les signaux de test. Un algorithme de traitement du signal a été développé pour discriminer les erreurs des DACs et ADCs. Cet algorithme a été validé par simulation et par expérimentation sur des produits commercialisés par NXP. La dernière partie de la thèse a consisté à développer de nouvelles applications pour l'algorithme.
|
136 |
Horlogerie distribuée pour les SoCs synchronesZianbetov, Eldar 25 March 2013 (has links) (PDF)
Cette thèse aborde le problème de génération d'horloge globale dans les SoCs complexes dans le contexte des technologies CMOS profondément submicroniques. Actuellement, afin de contourner les difficultés liées aux techniques classiques de distribution d'horloge (p.ex. arbre, grille) dans les systèmes synchrones, les concepteurs qui désirent de se rendre sur le paradigme Synchronisation Globale se tournent vers les techniques de synchronisation rompant avec les approches classiques (par exemple oscillateurs distribués, les ondes stationnaires , oscillateurs couplés, les retards programmables). Cette étude s'inscrit dans ce courant. Dans ce travail, nous avons étudié et mis au point un système de génération d'horloge sur puce destiné à un SoC synchrone de haute fiabilité. Cette architecture est basée sur un réseau d'oscillateurs couplés en phase et en fréquence à l'aide d'un réseaux de boucles à verrouillage de phase tout numériques (ADPLLs). Pendant cette recherche nous avons mis au point les spécifications et choisi une architecture de réseau. Un modèle théorique du système a été mis en place en collaboration avec CEA-LETI et Supélec dans le cadre du projet ANR HODISS. Nous avons analysé le comportement du système dans les simulations sur différents niveaux d'abstraction, en enquêtant des conditions de stabilité de son fonctionnement synchrone. L'ADPLL a été proposé comme un nœud élémentaire du réseau de synchronisation distribuée. L'utilisation d'ADPLL permet de contourner les difficultés d'implémentation, qui sont généralement associées à PLL analogique. Nous avons conçu les blocs principaux de l'ADPLL: un oscillateur à commande numérique (Digitally-Controlled Oscillator, DCO), un détecteur de phase/fréquence (PFD) et un bloc de traitement d'erreur. Une technique de conception basée sur les cellules a été adapté pour le développement d'oscillateur. Cette technique réduit considérablement la complexité de l'implémentation de l'oscillateur. Les autres blocs ont été conçus en utilisant un flot de conception numérique commun. Afin de réduire les risques associés à l'implémentation de silicium, le système a été validé dans une plate-forme de prototypage FPGA. Les résultats des mesures ont montré que la synchronisation de réseau se comporte comme prédit par la théorie et ainsi que les simulations. Deux circuits de prototypage ont été conçus, mis en œuvre et testés dans une technologie CMOS 65 nm de STMicroelectronics. La première puce est une preuve de concept d'un DCO conçu très linéaire et monotone. Les paramètres mesurés de l'oscillateur sont conformes aux spécifications. La performance mesurée a démontré une gigue de moins de 15 ps rms, en consommant 6.2 mW/GHz @ 1.1 V. La plage de réglage de l'oscillateur est 999-2480 MHz avec une résolution de 10 bits. La deuxième puce est un réseau d'horloge avec 4x4 nœuds qui se compose de 16 ADPLLs distribués. Chacun d'entre eux utilise les blocs conçu précédemment: DCO, PFD et bloc de traitement d'erreur. Les expérimentes ont montré que la technique proposée de génération d'horloge distribuée est réalisable sur une puce réelle CMOS. La performance mesurée démontre l'erreur de synchronisation entre les oscillateurs voisins moins de 60 ps, alors que la consommation d'énergie est 98.47 mW/GHz.
|
137 |
An 8-bit, 12.5GS/s Folding-interpolating Analog-to-digital ConverterGhetmiri, Shohreh 10 August 2009 (has links)
The motivation behind this work is to target the demand for high-speed medium-resolution ADCs for satellite communication systems. An 8-bit, 12.5GS/s folding-interpolating ADC was designed in 0.25µm, 190GHz SiGe BiCMOS technology from IHP. The ADC consists of a THA, a reference resistor ladder, folding amplifiers, an interpolating resistor string, a comparator array, a digital encoder, a coarse quantizer and a bit synchronizer.
Post-layout simulation results of the ADC verify that its performance meets all the required specifications. By comparison to other high-speed ADCs, implemented in SiGe technologies, the present design features the highest sampling rate for 8-bit resolution ADCs to date with a good FOM (12.9pJ/conversion).
The THA and the comparator were implemented experimentally and characterized to verify their performance and to ascertain the possibility of implementing the complete ADC. The experimental results meet the expected specifications and indicate that both circuits are suitable for the implementation of the ADC.
|
138 |
Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure DetectionQian, Chengliang 03 October 2013 (has links)
About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively.
This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals.
The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2.
The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2.
The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy.
|
139 |
Etude, Conception et Caractérisation de circuits pour la Conversion Analogique Numérique à très hautes performances en technologie TBH InP 0.7µm / Study, Design and Characterization of high performances ADC integrated circuits in 0.7 µm-InP-HBT technologyDeza, Julien 13 June 2013 (has links)
Ce travail de thèse concerne les circuits ultra-rapides pour la conversion analogique numérique performante en technologie bipolaire à hétérojonctions sur substrat Indium Phosphore (TBDH/InP). L'étude s'intéresse à la fonction principale qui est l'échantillonnage blocage. Elle a été menée par simulation de l'ensemble des blocs composant cette fonction. En particulier une étude extensive des cœurs des circuits Echantillonneurs/Bloqueurs a été effectuée pour différents paramètres électriques pour aboutir à des valeurs optimales réalisant un compromis entre la bande passante la résolution et la linéarité.Des architectures de circuits Echantillonneurs/Bloqueurs (E/B) avec ou sans l'étage d'amplification à gain variable ont été conçues, optimisées, réalisées et caractérisées et des performances à l'état de l'art ont été obtenues : des circuits E/B de bande passante supérieure à 50 GHz et cadencées à 70 Gs/s ont été réalisés pour les applications de communications optiques et des circuits de bande passante supérieure à 16 GHz cadencés à (2-8) Gs/s ont été réalisés pour la transposition de fréquence. / This thesis concerns the design of high speed circuits in Indium phosphide heterojunction Bipolar technology for High performance analog to digital conversion (ADC).The study focuses on the Track and Hold block (THA) which is the main function of the ADC. The study was conducted by simulating all blocks of the THA circuit. In particular, an extensive study of the THA main block was performed for various electrical parameters to achieve optimal conditions in order to obtain a good tradeoff between resolution bandwidth and linearity. THA architectures circuits with or without Voltage Gain Amplifier stage were designed, optimized and characterized. High THA performances were achieved: THA circuit with a bandwidth greater than 50 GHz at 70 Gs/s were achieved for optical communications and circuits of bandwidth more than16 GHz at (2-8 GS /s) have been realized for down conversion operation.
|
140 |
Etude d'un système de conversion analogique-numérique rapide de grande résolution adapté aux nouvelles générations de capteurs d'images CMOS / Study of a high speed high resolution analog to digital conversion system adapted for new generations of CMOS image sensors.Ben aziza, Sassi 03 May 2018 (has links)
Les technologies CMOS représentent aujourd’hui plus de 90% du marché des capteurs d’images : elles permettent d’intégrer des systèmes intelligents dans une seule puce (SoC = System-On-Chip) et ouvrent la voie à l’intégration d’algorithmes de plus en plus complexes dans les dernières générations de capteurs. Des techniques telles que la reconstruction grande dynamique nécessitent d’acquérir plusieurs images avec un même capteur et de les recombiner. Ces nouvelles contraintes nécessitent d’augmenter drastiquement le débit d’images pour des capteurs de tailles conséquentes (Jusqu'à 30 Mpixels), ainsi que d’augmenter la résolution du convertisseur analogique numérique (jusqu’à 14 bits). Cela crée une demande forte en techniques de conversion analogique-numérique. Ces techniques doivent obéir en même temps aux contraintes de performance notamment la vitesse, la résolution, le faible bruit, la faible consommation et l'intégrabilité mais aussi aux contraintes de qualité d'image impactées directement par la chaine de conversion analogique-numérique en plus de la technologie du pixel. D'ici découle une double problématique pour le sujet:- Etudier et déterminer les limites atteignables en termes de performance sur les différents axes précités.- Gestion du fonctionnement massivement parallèle lié à la structure inhérente des capteurs d'image en vue d'avoir une qualité d'image irréprochable. / CMOS technologies represent nowadays more than 90% of image sensors market given their features namely the possibility of integrating entire intelligent systems on the same chip (SoC = System-On-Chip). Thereby, allowing the implementation of more and more complex algorithms in the new generations of image sensors.New techniques have emerged like high dynamic range reconstruction which requires the acquisition of several images to build up one, thus multiplying the frame rate.These new constraints require a drastic increase of image rate for sensors ofconsiderable size (Up to 30 Mpix and more). At the same time, the ADCresolution has to be increased to be able to extract more details (until 14 bits).With all these demanding specifications, analog-to-digital conversion capabilities have to be boosted as far as possible.These capabilities can be distinguished into two main research axes representing the pillars of the PhD work, namely:+ The study of the reachable limits in terms of performance: Speed, Resolution,Low Noise, Low power consumption and small design pitch.+ The management of the highly parallel operation linked to the structure of animage sensor. Solutions have to be found so as to avoid image artefacts andpreserve the image quality.
|
Page generated in 0.0956 seconds