Spelling suggestions: "subject:"dipolaire"" "subject:"dipolares""
1 |
Anellierte 6-Azaindolizine durch intramolekulare 1,3-dipolare Cycloaddition /Engelbach, Martin. January 1995 (has links) (PDF)
Universiẗat, Diss.--Marburg, 1995.
|
2 |
Synthese potentieller GABA-uptake-inhibitoren mit bicyclischer Struktur durch 1,3-dipolare Cycloadditionen und [2+2]-PhotocycloadditionenSchwarzer, Marie Friederike January 2008 (has links)
Zugl.: Bochum, Univ., Diss., 2008
|
3 |
Alkinhaltige Blockcopolymere und ihre Modifizierung mittels 1,3-dipolarer CycloadditionFleischmann, Sven January 2008 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2008
|
4 |
Anbindung von Katalysatoren an Nanodiamantpartikel mit Hilfe starrer Linker / Immobilisation of catalysts on nanodiamond particles using rigid linkersBuschmann, Peter January 2015 (has links) (PDF)
Das Ziel dieser Arbeit war die Herstellung von Diamantmaterialien, deren Oberflächen mit Alkinen, Aziden oder Aldehyden modifiziert waren. Diese funktionellen Gruppen sollten die einfache Anbindung verschiedener katalytisch aktiver Systeme mit Hilfe der 1,3-dipolaren Cycloaddition nach Huisgen bzw. Iminbildung ermgöglich.
Da in einer vorangegangenen Arbeit Hinweise darauf gefunden wurde, dass die hochgradig funktionalisierte Oberfläche von Detonationsnanodiamant dazu in der Lage ist, die Aktivität von immobilisierten Katalysatoren zu behindern. Darum wurde in dieser Arbeit verglichen, ob die Verwendung von starren Linkern auf Tolanbasis einen Vorteil gegenüber ihren flexiblen Gegenstücken liefert. Dazu wurde für jede der oben genannten Funktionalisierungsarten je ein Diamantmaterial mit flexibler sowie mindestens eines mit unbiegsamer Verbindungseinheit hergestellt und getestet. Dadurch konnte das Konzept der starren Linker für Enzyme bestätigt werden und es wurde eine signifikant höhere Aktivität erhalten, als wenn flexible Anbindungsbrücken verwendet wurden. Bei Organokatalysatoren und metallorganischen Systemen konnten jedoch keine erfolgreichen Katalysen durchgeführt werden. / The aim of this work was the production of diamond materials whose surfaces were modified either with alkynes, azides, or aldehydes. These functional groups were supposed to allow the simple immobilisation of catalytically active systems via 1,3-dipolar cycloadditions or imine formation, respectively.
In a previous publication, it was found that the highly functionalised surface of detonation nanodiamond can reduce the activity of immobilised catalysts. In this work, it was therefore investigated whether the use of rigid linkers based on tolane derivatives would be advantageous when compared to their flexible counterparts. For this purpose, at least one example for both cases was produced for each of the above mentioned functional groups. Test results showed that the concept of the rigid linkers was successful for the immobilisation of enzymes, for which a significantly higher activity was detected when compared to flexible linkers. However, for organocatalysts and metal organic systems successful catalysis was not achieved.
|
5 |
Funktionalisierung von 6H-1,2-Oxazinen durch 1,3-dipolare Cycloadditionen und HalogenierungenSchmidt, Elmar. Unknown Date (has links) (PDF)
Techn. Universiẗat, Diss., 2001--Dresden.
|
6 |
Stereoselektive Synthese verschiedener beta-Amino- und Microcos-Piperidinderivate : Versuche zur Totalsynthese von (+)-Microconin / Stereoselective synthesis of beta-amino- and Microcos-piperidines : An approach to the total synthesis of (+)-MicroconineKönig, Martin January 2009 (has links) (PDF)
Das Ziel dieser Arbeit war es, eine im Arbeitskreis entwickelte Methode zur Darstellung von unterschiedlich substituierten -Aminopiperidinen zu etablieren und zu verifizieren, indem unser Konzept einer Tandemreaktion zum Einsatz kommen sollte. Diese Reaktionssequenz sollte anschließend zur Totalsynthese von Microconin, einem aus Microcos paniculata isoliertem Alkaloid, genutzt werden. Den ersten Schritt in Richtung -Aminopiperidinderivate machte die Veresterung von L-Pyroglutaminsäure. Nach der Reduktion des Methylesters erfolgte die Aktivierung der Hydroxyfunktion des Alkohols in Form des Tosylats. Die Azideinführung resultierte aus einer nucleophilen Substitutionsreaktion, anschließend daran wurde der Lactam-Stickstoff mit Boc2O und einer katalytischen Menge DMAP geschützt. Das Lactam ist durch den Elektronenakzeptor aktiviert, so dass die Ringöffnung zum Methylester unter sehr milden Bedingungen und ohne weiteren Reinigungsschritt erfolgen konnte. Die Aminofunktion musste mit einer zweiten Schutzgruppe blockiert werden, die anschließende selektive Reduktion mit DiBAl-H in trockenem Ether verlief problemlos und lieferte mit dem Aldehyd das Edukt für Olefinierungen mittels verschiedener Wittig-Reaktionen. Dafür wurden stabilisierte Phosphonate hergestellt und in einer HWE-Reaktion mit dem Aldehyd umgesetzt. Die resultierenden elektronenarmen Olefine gingen dann die intramolekulare Cycloaddition mit dem Azidsubstituenten ein und bauten so den Grundkörper der -Aminopiperidinderivate in einer Reaktionssequenz auf, die wir als Tandem Wittig-[3+2]-Cycloaddition bezeichnen. Die Bildung der primären Triazoline erfolgte stereoselektiv, die Geschwindigkeit der Cycloaddition hing sowohl vom konjugierten Olefinsubstituenten als auch vom vicinalen Substituenten der Azidfunktion ab. Die Konfigurationsbestimmung erfolgte mittels NMR-Spektroskopie durch Analyse der Kopplungskonstanten und NOE-Messungen. Die asymmetrische Induktion der Cycloaddition konnte direkt für die Stereochemie am Piperidinring genutzt werden, indem, nach basischer Triazolin/Diazoamin Isomerisierung, gleich das Diazoamin hydriert wurde. Die Hydrierung der vinylogen Urethane, den Produkten aus der rhodiumkatalysierten Stickstoffextrusion, lieferte ein Diastereomerengemisch, wobei das Verhältnis der Diastereomere hauptsächlich vom Substitutionsgrad des exocyclischen Amins abhängig war. Überraschenderweise fand beim Sulfontriazolin keine Isomerisierung zum Diazoamin statt, daher musste für die Darstellung der Sulfonylmethyl--aminopiperidine eine alternative Route über ein Ketosulfon beschritten werden. Die Synthese von Microconin begann mit der Desoxygenierung von L-Rhamnose durch die sog. Fischer-Zach-Reaktion. Das Rhamnal wurde in einer drei Stufen Eintopfreaktion erhalten und mittels Perlinhydrolyse in den offenkettigen Aldehyd umgewandelt. Die Aktivierung der Hydroxyfunktion als Mesylat resultierte in einer äußerst empfindlichen Verbindung, die nur durch Verwendung des Lindlar-Katalysators mit zufrieden stellenden Ergebnis zum aliphatischen Aldehyd reduziert werden konnte. Eine bimolekulare nucleophile Substitutionsreaktion lieferte bei der Azideinführung zur Schlüsselverbindung sowohl die benötigte funktionelle Gruppe als auch die benötigte Inversion der Konfiguration. Die Tandem HWE-[3+2]-Cycloadditions-Reaktion führte auch bei dem Sulfontriazolin in eine Sackgasse, weshalb wieder eine alternative Syntheseroute eingeschlagen werden musste. Ausgehend von derselben Schlüsselverbindung gelang dies durch eine zinnkatalysierte Umsetzung mit stabilisierten Diazomethan zum Ketosulfon. Der Aufbau des Piperidin-Heterocyclus konnte dann wieder über eine intramolekulare Imin-Bildung des intermediären Amins mit dem Keton erzielt werden. Die diastereoselektive Hydrierung verlief unter Wasserstoffaddition von der sterisch weniger gehinderten -Seite und Ausbildung des all cis Substitutionsmusters. Nach dem erfolgreichen Aufbau des Heterocyclus mussten noch die beiden Heteroatome methyliert werden. Dabei wurden die besten Ergebnisse am Ringstickstoff mit der reduktiven Aminierung erzielt. Bei der anschließenden Abspaltung der Acetylgruppe zeigte sich erstmals, dass das Substitutionsmuster am Piperidinring nicht konfigurationsstabil war, da neben dem erwarteten Alkohol auch das Diastereomer isoliert wurde. Die genaue Ursache für die Epimerisierung nach der N-Methylierung konnte nicht geklärt werden. Die Einführung des Methoxy-Substituenten am Grundkörper erfolgte über eine Williamsonschen Ethersynthese. Bei den Versuchen zur Kupplung des Grundkörpers mit der Seitenkette 2,4-Nonadienal erwies sich der Zusatz von HMPT als förderlich. Weiterhin konnte die Ausbeute an -Hydroxysulfonen durch das Erwärmen der Reaktionsmischung gesteigert werden. In den Folgeschritten der Julia-Olefinierung blieben die Versuche zur Ausbildung der dreifach ungesättigten Struktureinheit in der Seitenkette des isolierten Naturstoffs jedoch erfolglos. / The aim of this work was to establish and verify a route to differently substituted and easy modifiable -amino piperidines using the tandem reaction concept established in our work group. This concept should then be used for the total synthesis of Microconin (3), an alkaloid of Microcos paniculata. In the first step to -amino piperidines L-pyroglutamic acid was converted to its methyl ester according to a modified literature procedure. The reduction of the ester was followed by the activation of the alcohol as its tosylate. The incorporation of azide was achieved by nucleophilic substitution and the lactam moiety was protected using Boc2O and a catalytic amount of DMAP. Protection by an electron acceptor activates the lactam functional group so ring opening with methoxide occurred smoothly at room temperature to yield the azidoester without further purification. The amino function had to be blocked by introduction of a second protecting group, selective reduction in anhydrous ether employing DiBAl-H performed without surprise and resulted in the aldehyde as starting material for olefinations by Wittig type reactions. Several stabilised phosphonates were synthesised and reacted with the aldehyde in the HWE-reaction. The electron poor olefins underwent intramolecular azide cycloaddition building up the -amino piperidine scaffold in a sequence we call tandem Wittig-[3+2]-Cycloaddition. The primary triazoline formation is often diastereoselective whereas the reaction rate depends on the conjugated olefine substituent as well as on stereoelectronic effects caused by the vicinal azido functional group. The resulting configuration was determined by NMR-spectroscopy using analysis of coupling constants and NOESY-techniques. Asymmetric induction in the cycloaddition can be utilised in the piperidine heterocycle after basic triazolin/diazoamine isomerisation and subsequent hydrogenation of the diazo compound. Hydrogenation of the vinylogous urethanes, products of the Rhodium mediated extrusion of nitrogen, lead to a diastereomeric mixture, whereas the diastereomeric ratio depended mostly on the substitution grade of the exocyclic amine. Surprisingly, the isomerisation of sulphono triazoline to the corresponding diazo amin did not happen, so an alternative approach over a ketosulphone to the sulfonylmethyl -amino piperidines had to be found. The synthesis of micrconine started with the deoxygenation of L-rhamnose in a Fischer-Zach reaction. The rhamnal was synthesised in a three step one pot reaction and the ring was opened by Perlin hydrolysis to the aldehyde. Activation of the hydroxyl function as a mesylate resulted in a very unstable compound, witch could only be reduced to the aliphatic aldehyde with sufficient results using the Lindlar catalyst. A bimoleculare nucleophilic substitution reaction of mesylate by azide led to the key intermediate with the necessary inversion of configuration. The tandem Wittig-[3+2]-Cycloaddition led with the sulphon triazoline in a dead end road. Therefore, an alternative synthetic route had to be found again. Starting from the key intermediate, the solution was a tin catalysed reaction with stabilised diazomethane leading to the ketosulphone. The construction of the heterocyclic piperidine core could then be accomplished by an intramoleculare imine formation of the amine intermediate with the ketone. Addition of hydrogen in the diastereoselective hydrogenation took place from the less hindered  face and resulted in an all cis configuration of the molecule. After successful creation of the heterocyclic frame, both hetero atoms had to be methylated. Best results at the ring nitrogen gave reductive aminations. That the substitution pattern of the piperidine heterocycle was configurationally unstable was observed the first time at the following deacetylation by isolating the diastereomeric alcohol besides the desired. The exact reason for the epimerisation after N-methylation could not be evaluated. The last step to the heterocyclic scaffold was the introduction of the methoxy function by a variant of the Williamson ether synthesis. In the coupling reactions of the piperidine core with the side chain unit 2,4-nonadienal the addition of HMPA proofed to be very effective. The yield of -hydroxysulphones could be further improved by slowly warming of the reaction mixture to room temperature. The following steps of the Julia-Olefination to build up the olefinic substructure in the side chain of the isolated natural compound remained without success.
|
7 |
Ex-Chiral-Pool-Synthese von 5-Aminopiperidylessigsäuren über eine Tandem-Wittig-1,3-dipolare Cycloaddition / ex-chiral-pool synthesis of 5-aminopiperidylaceticacid via tandem-Wittig-1,3-dipolar cycloaddition reactionGüthlein, Markus January 2002 (has links) (PDF)
Ziel dieser Arbeit war es die Tandem-Wittig-1,3-dipolare Cycloaddition auf a-Hydroxyurethanderivate zu übertragen und so chirale, nichtracemische b-Amino-piperidylacetatderivaten in möglichst hoher Diastereomerenreinheit darzustellen. Diese Aminopiperidinderivate sollten mit 5-Chloro-2-methoxy-4-methylamino-benzoesäure gekoppelt werden, um die pharmakologische Wirksamkeit zu testen. Als Ausgangssubstanz wurde L-Pyroglutaminsäure (59) verwendet. Über eine dreistufige literaturbekannte Synthese wurden die beiden Halogenpyrrolidinon-derivate 62 und 63 hergestellt. Diese wurden über SN2-Reaktionen mit Natriumazid zu dem Azidopyrrolidinon 64 umgesetzt und durch die Einführung einer Boc-Schutzgruppe in die Verbindung 65 überführt. Die Hydroxyurethanderivate 66 erhält man auf zwei unterschiedlichen Wegen. Zum einen auf dem direkten Weg über eine DiBAl-H-Reduktion von 65 und zum anderen über eine Ringöffnung von 65 mit Natriummethanolat zu 68 und anschließender DiBAl-H-Reduktion. Mit 66 wurden das erste Mal a-Hydroxyurethanderivate einer Tandem Wittig 1,3-dipolaren Cycloaddition unterworfen. Man erhielt unter Essigsäurekatalyse ein Produktgemisch aus dem a,b-ungesättigten Ester 74, dem Triazolin 75 und dem Diazoester 76. Der isolierte a,b-ungesättigte Ester 74 konnte teilweise unter Essigsäaurekatalyse erneut zu den Cycloadditionsprodukten umgesetzt werden. Die Gleichgewichtseinstellung zwischen dem Triazolin 75 und dem Diazoester 76 konnte mit Triethylamin zugunsten des Diazoesters 76 verändert werden. Die Wittigreaktion verläuft unter thermodynamischer Kontrolle stereoselektiv zum E-konfigurierten a,b-ungesättigtem Ester 74. Auch die 1,3-dipolare Cycloaddition verläuft in einem äußerst hohem Maße diastereoselektiv. Durch 1H-NMR-spektroskopische Untersuchungen konnte man die Konfiguration der Cycloadditionsprodukte mit trans bestimmen. Eine Erklärung für die Stereoselektivität der 1,3-dipolaren Cycloaddition liefert die Betrachtung der sterischen und elektronischen Eigenschaften zweier hypothetischer sesselförmiger Konformere des a,b-ungesättigten Esters 74. Über eine katalytische Hydrierung des Diazoesters 76 konnte man einen sehr guten Zugang zu den trans-konfigurierten Piperidylacetaten 2R-78 etablieren. Das andere Diastereomer 2S-78 sollte nach Stickstoffextrusion aus 76 durch diastereoselektive Hydrierung des vinylogen Urethans 80 erhalten werden. Überraschenderweise entstand auch hier 2R-78 als Hauptprodukt. 2S-78 konnte nur als Nebenprodukt isoliert werden. Über eine reduktive Aminierung konnte man eine Methylgruppe am Ringstickstoff von 2R-78 bzw. 2S-78 einführen und erhielt 2R-81 bzw. 2S-81. Mit Moc2O konnte man die beiden Diastereomere 2R-78 und 2S-78 in die geschützten Piperidinderivate 2R-82 und 2S-82 überführen. Die Moc-geschützte Verbindung 2R-82 erhielt man außerdem über eine Synthese des Moc-geschützten Diazoesters 83 und anschließender katalytischen Hydrierung. Nach Abspalten der Boc-Schutzgruppe durch eine Umsetzung der Piperidine 2R-81 bzw. 2S-81 mit methanolischer Salzsäure konnte man die Dihydrochloride 2R-87 bzw. 2S-87 isolieren. Die freien Amine 2R-88 bzw. 2S-88 erhielt man nach Ausschütteln mit gesättigter Natriumcarbonatlösung. Die Piperidylacetate 2R-88 und 2S-88 konnten mit dem Benzoesäurederivat 79 über eine Amidkopplung verbunden werden. Diese Synthese war sowohl über den von GMEINER benutzten Weg, als auch über die Methode von MOHAPATRA und DATTA erfolgreich. Mit 2R-94 und 2S-94 konnten die ersten Nemonaprid-Analoga, die ein a-Aminopiperidingrundgerüst enthalten, dargestellt werden (Schema 47 und Schema 48). Das Piperidylacetat 2R-88 konnte man mit Lithiumaluminiumhydrid zu dem Piperidylethanol 99 umsetzten. / The goal of this studies was to apply the tandem-Wittig-1,3-dipolar cycloaddition to cyclic acceptor substituted a-hydroxyurethanes. Chiral, non racemic 2-alkyl-5-aminopiperidines should be accessible in high diastereomeric excess by using this reaction. The a-aminopiperidine derivatives should be reacted with 5-chloro-2-methoxy-4-methylaminobenzoic acid to the amides and the pharmacological activities of the achieved compounds should be tested. L-pyroglutamic acid was used as a starting material. The synthesis of the key intermediate 66 starts with a three step reaction sequence to the halogenopyrrolidine derivatives 62 and 63. The introduction of azide functionality by nucleophilic substitution to the azidopyrrolidine derivative 64 followed by the protection of the amide group with Boc2O yielded 65. The hydroxyurethane derivative 66 was obtained in two different ways, namely directly by using a DiBAl-H reducing of 65 and on the other hand by ring opening reaction of 65 with sodium methoxide to 68 followed by a DiBAl-H reduction. For the first time the a-hydroxyurethanes 66 as starting material for the tandem-Wittig-1,3-dipolar cycloaddition reaction was applied. A product mixture of the a,b-unsaturated azido ester 74, the triazoline 75 and the diazo ester 76 was achieved by using acetic acid as a catalyst. A mixture of the cycloaddition products could be obtained again by treatment of the isolated a,b-unsaturated azido ester 74 with acetic acid. Rearrangement of the triazoline 75 to the corresponding diazo ester 76 was achieved by addition of triethylamine. Only the E-configurated compound 74 was obtained. This leads to the conclusion that the Wittig reaction is under thermodynamic control. The cycloaddition shows excellent diastereoselectivity. By using 1H-NMR-spectroscopy the trans-configurated cycloaddition product as the single isomer were determined. An explanation for the diastereoselectivity of the 1,3-dipolar cycloaddition is given by a consideration of the steric and electronic properties of two open chain products namely the a,b-unsaturated azido ester 74. An efficient synthetic pathway to the piperidine derivative 2R-78 was established by catalytic hydrogenation of the diazo ester 76. The other diastereomer should be obtained by Rh-mediated extrusion of nitrogen and distereoselective hydrogenation of the vinylogous urethane 80. To our surprise the piperidine derivative 2R-78 was the main product. 2S-78 could only be obtained as the minor stereoisomer. A reductive amination was the most efficient way to introduce a methyl group to the ring nitrogen atom. Introducing Moc2O lead to the protected piperidine derivatives 2R-82 and 2S-82. The protected piperidine derivative 2R-78 was also obtained by the synthesis of the Moc-protected diazo ester 83 and following hydrogenation. After cleavage of the Boc-protecting groups with methanolic hydrogen chloride the dihydrochlorides 2R-87 and 2S-87 were obtained. The free amines 2R-88 and 2S-88 could be coupled with the benzoic acid derivate 79 by using different coupling methods e.g. the method of MOHAPATRA and DATTA. For the first time with 2R-94 and 2S-94 Nemonaprid analogous, which include a ƒÒ-aminopiperidine structure, were obtained.
|
8 |
Beiträge zur Chemie von Nanodiamantpartikeln – Die 1,3-dipolare Cycloaddition auf modifizierten Diamantoberflächen / Contributions to the Chemistry of Diamond Nanoparticles – The 1,3 dipolar Cycloaddition on modified diamond surfacesLang, Daniel January 2013 (has links) (PDF)
Ausgangspunkt war die aus der Fulleren-Chemie bekannte Prato-Reaktion, bei welcher das Ylid in situ aus einer Aminosäure und einem Aldehyd generiert wird und anschließend mit den C=C-Bindungen des Fullerens reagiert. Diese Funktionalisierungsmethode wurde nun auf Detonationsnanodiamant übertragen.
Um zusätzliche π-Bindungen auf der Oberfläche der Diamantteilchen zu schaffen, wurden diese i.Vak. bei 750 °C ausgeheizt (ND750). Für die Immobilisierung wurde die Aminosäure Sarcosin gewählt. Dodecanal und 2,4,6-Tris(hexadecyloxy)-benzaldehyd dienten jeweils als Reaktionspartner.
Da bereits in früheren Studien gezeigt wurde, dass bei dieser Reaktion der Aldehyd selbst unspezifisch an den Diamanten binden kann und so möglicherweise Teile der Oberfläche für die spezifische Funktionalisierung blockiert, wurden für die weitere Betrachtung Azomethinylidvorstufen synthetisiert, die selbst nicht in der Lage sind, mit der Diamantoberfläche zu reagieren. Diesen Zweck erfüllten N-heterocyclische Iminiumbromide, die durch Umsetzung des jeweiligen Heteroaromaten mit Bromessigsäureethylester bzw. Bromacetonitril erhalten wurden.
Alle Ylidvorstufen wurden in Gegenwart von NEt3 in situ zu den gewünschten Dipolen umgesetzt und auf Nanodiamant immobilisiert.
Neben ND750 wurden auch oxidierter und unbehandelter Diamant (NDox bzw. NDunb) sowie Diamant, der bei 900 °C i.Vak. ausgeheizt wurde (ND900), als Substrat eingesetzt, um den Einfluss der Oberflächenterminierung und des Graphitisierungsgrades auf das Reaktionsverhalten zu studieren. Durch Raman- und IR-Spektroskopie wurde gezeigt, dass NDox sehr viele Carbonylgruppen und wenig C=C-Doppelbindungen auf seiner Oberfläche trägt. Durch das Ausheizen i.Vak wurden hingegen zusätzliche π-Bindungen erzeugt, die bei ND900 bereits ausgedehntere Bereiche mit sp2-Kohlenstoff bilden.
Der Erfolg der Immobilisierung wurde IR-spektroskopisch nachgewiesen. Die Oberflächenbeladung aller hergestellten Diamantaddukte wurde thermogravimetrisch bestimmt.
NDox immobilisierte unabhängig vom Reaktionspartner stets die wenigsten Moleküle auf seiner Oberfläche. Deren Terminierung wird von Carbonylgruppen dominiert, die grundsätzlich schlechtere Dipolarophile darstellen als C=C-Doppelbindungen.
Die übrigen Diamantmaterialien NDunb, ND750 und ND900 ließen keine eindeutige Tendenz bezüglich ihrer Reaktionsfreudigkeit erkennen. Die Oberfläche des unbehandelten Diamanten NDunb besitzt sowohl Carbonylfunktionen als auch einzelne Bereiche graphitischen Kohlenstoffs. Diese konkurrieren vermutlich um die angebotenen Dipole, sodass die resultierenden Oberlächenbeladungen ihrer Konjugate in einem mittleren Wertebereich liegen. Durch das Ausheizen i.Vak. werden viele Carbonylgruppen unter Ausbildung weiterer C=C-Doppelbindungen von der Oberfläche entfernt. Bei 750 °C sind diese räumlich sehr beschränkt, stark gekrümmt und daher sehr reaktiv. Trotzdem erreichte ND750 selten eine Oberflächenbelegung, welche jene von NDunb übertrifft. Die π-Bindungen auf seiner Oberfläche sind in Fünf- und Sechsringe eingebaut, um die gekrümmte Struktur zu realisieren. Wahrscheinlich besteht für die Cycloaddition an Nanodiamant eine dem Fulleren C60 ähnliche Regioselektivität bezüglich der angegriffen Doppelbindung. Somit stehen nicht alle frisch erzeugten C=C-Bindungen für die Reaktion zur Verfügung.
Bei 900 °C ist die Graphitisierung der Diamantoberfläche weiter fortgeschritten. Es entstehen nicht nur neue C=C-Bindungen, sondern bereits gebildete Kohlenstoffkappen beginnen zu koaleszieren, wobei ausgedehntere sp2-Bereiche mit geringerer Krümmung und somit verminderter Reaktivität entstehen. So nimmt die Oberflächenbeladung der meisten ND900-Konjugate nicht weiter zu.
Wie aus den Ergebnissen dieser Arbeit hervorgeht, ist die Funktionalisierung von Nanodiamantpartikeln nicht trivial. Sowohl die Oberflächenbeschaffenheit des Diamantmaterials als auch die Struktur des eingesetzten Azomethinylids beeinflussen das Immobilisierungsverhalten.
Die vorliegende Arbeit zeigt aber, dass die 1,3-dipolare Cycloaddition von Azomethinyliden eine nützliche Methode zur Funktionalisierung von Nanodiamantpartikeln ist. Sie ermöglicht des Weiteren die simultane Einführung mehrerer unterschiedlicher funktioneller Gruppen. Dies macht die untersuchte Reaktion zu einem wertvollen Werkzeug für die Herstellung funktionalisierter Nanodiamantmaterialien, z. B. für biomedizinische Anwendungen. / It is commonly known from the chemistry of fullerene C60 that these ylides, generated in situ by a decarboxylative condensation of an amino acid and an aldehyde, add to the C=C double bonds of the fullerene. In this work this kind of functionalization was transferred to nanodiamond particles.
Prior to the reaction, the diamond particles were annealed in vacuo at 750 °C in order to establish additional π-bonds on their surface. The amino acid sarcosine was chosen for immobilization. Dodecanal and 2,4,6-tris(hexadecyloxy) benzaldehyde each served as the reactant.
Earlier studies demonstrated that the aldehyde itself is able to bind nonspecifically to the diamond surface. Thus, ylide precursors unable to react directly with diamond had to be synthesized. N-heterocyclic iminium bromides served this purpose. They were obtained by the conversion of N-heteroaromatic compounds with bromo ethylacetate and bromo acetonitrile respectively.
All ylide precursors were converted in situ to the desired 1,3-dipoles with NEt3 and grafted onto nanodiamond.
This reaction was applied not only to ND750, but also to oxidized and pristine diamond (NDox and NDunb) as well as diamond, which was annealed in vacuo at 900 °C (ND900), in order to investigate how the termination and the degree of graphitization of the diamond surface affect the reaction behaviour. As shown by Raman and IR spectroscopy, NDox carries a lot of carbonyl functions and very few C=C bonds. On thermal annealing, additional π-bonds were created, which began to form extended sp2-areas on ND900.
The various pre-treated starting materials were subjected to reactions with N-heterocyclic iminium salts. The successful immobilization was verified by IR spectroscopy. The surface loading values of all obtained diamond adducts were determined by thermogravimetric analyses.
No matter which reagent was applied, NDox invariably displayed the fewest surface loadings in each course of reactions. This is due to the prevailing carbonyl surface groups. They are essentially poorer dipolarophiles than C=C double bonds.
In terms of reactivity the other diamond starting materials NDunb, ND750 and ND900 did not exhibit a definite trend. The surface of the pristine diamond NDunb offers carbonyl groups as well as particular areas of graphitic carbons. They both compete for the applied dipoles and the corresponding diamond conjugates have moderate surface loading values .
Annealing the diamond samples in vacuo removes the carbonyl groups and generates further C=C bonds instead. At 750 °C, these are spatially confined, strongly curved and thus highly reactive. Nevertheless, the surface loadings for ND750 rarely exceeded those of NDunb. The π-bonds on its surface are incorporated in five- and six-membered rings to accomplish the curved structure. Regarding the regioselectivity of the attacked double bond, it is possible to compare the cycloaddition on nanodiamond to the reaction on fullerene C60. That is the reason why not all freshly generated C=C bonds on the diamond are available for the reaction.
At 900 °C, the graphitization of the diamond surface has further progressed. Not only are new C=C bonds formed, but the already established sp2-caps also begin to coalesce, whereby extended graphitic areas start to emerge. They are less curved and thus less reactive. So the surface loading of most ND900 conjugates does not increase.
The experimental findings demonstrate that the functionalization of diamond nanoparticles is not trivial. Both the nature of the diamond surface and the structure of the applied azomethine ylides affect the behaviour of the immobilization.
Nonetheless, the herein studied 1,3-dipolar cycloaddition of azomethine ylides is a useful method to functionalize nanodiamonds. It even allows for the simultaneous introduction of several different functional groups. Thus, this dipolar reaction is a valuable tool for the preparation of functionalized diamond nanomaterials, which could be employed for biomedical applications.
|
9 |
Synthese neuer makrocyclischer TriazolsystemeIhle, Andreas 07 September 2006 (has links) (PDF)
In der vorliegenden Arbeit wird die Verwendbarkeit verschiedener Alkine bzw. organischer
Azide für die katalysierte 1,3-dipolare Cycloaddition dokumentiert. Es wird gezeigt, dass
Popargylazid eine Sonderstellung bezüglich dieser katalysierten Cycloaddition einnimmt, da
es diese zu inhibieren vermag.
Der Hauptschwerpunkt der Arbeit liegt in der Synthese makrocyclischer Triazolsysteme unter
Verwendung der Cu(I)-katalysierten 1,3-dipolaren Cycloaddition. Durch die Entwicklung
einer mehrstufigen Synthese gelingt die Darstellung eines makrocylischen Triazolsystems,
das formal als cyclisches Tetramer von Propargylazid aufgefasst werden kann. Durch
Übertragung des Syntheseprinzips auf andere Fünfring-Heterocyclen (Tetrazole, Imidazole),
wird eine große Anzahl an makrocyclischen Verbindungen als potentielle Komplexliganden
erzeugt. Der Vergleich der Zielprodukte liefert Aussagen über deren Eigenschaften, vor allem
deren Löslichkeitsverhalten und deren Reaktivität. Anhand einer Kristallstruktur wird gezeigt,
dass es sich um nichtplanare Verbindungen handelt, was aus den NMR-Messungen bei
Raumtemperatur nicht hervorgeht.
Des weiteren werden aus den Nebenprodukten des Syntheseweges ebenfalls neue
heterocyclische Systeme gewonnen, die den Makrocyclen ähnliche Eigenschaften aufweisen.
Ferner gelingt die Synthese einer neuartigen Käfigverbindung aus einem der erstmalig
erzeugten Makrocyclen, deren Struktur kristallographisch belegt werden kann.
|
10 |
Synthesis of five-membered cyclic nitrones and their applications in preparation of isoxazolidines and substituted pyrrolidinesWang, Xianheng January 2008 (has links)
Zugl.: Stuttgart, Univ., Diss., 2008
|
Page generated in 0.0499 seconds