• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 225
  • 50
  • 35
  • 23
  • 9
  • 9
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 465
  • 69
  • 67
  • 65
  • 61
  • 48
  • 44
  • 43
  • 40
  • 39
  • 38
  • 35
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Nonlocal density functional theory of water taking into account many-body dipole correlations: binodal and surface tension of ‘liquid–vapour’ interface

Budkov, Yu. A., Kolesnikov, Andrei L. 28 April 2023 (has links)
In this paper we formulate a nonlocal density functional theory of inhomogeneous water. We model a water molecule as a couple of oppositely charged sites. The negatively charged sites interact with each other through the Lennard–Jones potential (steric and dispersion interactions), square-well potential (short-range specific interactions due to electron charge transfer), and Coulomb potential, whereas the positively charged sites interact with all types of sites by applying the Coulomb potential only. Taking into account the nonlocal packing effects via the fundamental measure theory, dispersion and specific interactions in the mean-field approximation, and electrostatic interactions at the many-body level through the random phase approximation, we describe the liquid–vapour interface. We demonstrate that our model without explicit account of the association of water molecules due to hydrogen bonding and with explicit account of the electrostatic interactions at the many-body level is able to describe the liquid–vapour coexistence curve and the surface tension at the ambient pressures and temperatures. We obtain very good agreement with available in the literature MD simulation results for density profile of liquid–vapour interface at ambient state parameters. The formulated theory can be used as a theoretical background for describing of the capillary phenomena, occurring in micro- and mesoporous materials.
302

Neurophysiological Correlates of the Critical Bandwidth in the Human Auditory System

Bentley, Grace Ann 01 November 2015 (has links) (PDF)
The critical bandwidth (CBW) is an auditory phenomenon that has been used to study various aspects of auditory processing, including auditory masking, complex tone processing, and loudness perception. Although the psychoacoustic aspects of the CBW have been well studied, the underlying neurophysiology of the CBW has not been as thoroughly examined. The current study examined the neurophysiology of the CBW in young adults, as well as loudness perception in response to the CBW. Auditory stimuli consisting of complex tones of varying bandwidths were presented to 12 individuals (6 male and 6 female, ages 18-26 years). Complex tones were presented around center frequencies (CFs) of 250, 500, 1000, and 3000 Hz at bandwidths of 2, 5, 8, 10, 20, 50, 100, 200, 500, 1000, and 2000 Hz. Participants made loudness perception judgments while electroencephalography measured and recorded components of the event related potentials (ERPs) in response to the acoustic stimuli. Reaction time (RT) was recorded for each behavioral response, and the latencies of the N1, P2, C3, and C4 components of the ERPs were obtained. The results showed that RT increased with increasing bandwidth followed by a decrease in RT corresponding approximately with the CBW. This indicated that participants perceived a change in loudness at bandwidths greater than the CBW. Significant differences, p < .05, in RT were observed in bandwidths of 5 Hz and greater, although there was not complete consistency in this observation across all CFs and bandwidths. No significant critical band-like behavior amongst ERP latencies was observed. The results indicated that responses to acoustic stimuli originating in the superior temporal gyrus progressed to areas of higher neural function in the mid-temporal lobe. It was observed that each response must be processed temporally and independently to determine if a frequency difference is present for each stimulus. This observation is significant because this type of processing had not been identified prior to the current study.
303

Two-Photon Ionization of the Calcium 4S3D 1D2 Level in an Optical Dipole Trap

Daily, Jared Estus 10 March 2005 (has links) (PDF)
This thesis reports an optical dipole trap for atomic calcium. The dipole trap is loaded from a magneto-optical trap (MOT) of calcium atoms cooled near the Doppler limit (~1 mK). The dipole trap is formed by a large-frame argon ion laser focused to 20 microns into the center of the MOT. This laser runs single-line at 488 nm with a maximum power of 10.6 watts. These parameters result in a trap of 125 mK for calcium atoms in the 4s3d 1D2 state. The 488 nm light also photo-ionizes the trapped atoms due to a near-resonant transition to the 4s4f 1F3 level. These ions leave the trap and are detected to determine the trap decay rate. By measuring this decay rate as a function of 488 nm intensity, we determine the 1F3 photo-ionization cross section at this wavelength to be approximately 230 Mb.
304

Brain Mapping of the Mismatch Negativity Response in Vowel Formant Processing

Perry, Elizabeth Anne 01 June 2012 (has links) (PDF)
The mismatch negativity (MMN) response, a passively-elicited component of the auditory event-related potential (ERP), reflects preattentive identification of infrequent changes in acoustic stimuli. In the current study, the MMN response was examined closely to determine what extent natural speech sounds evoke the MMN. It was hypothesized that a significant MMN response results during the presentation of deviant stimuli from which spectral energy within formant bands critical to vowel identification has been removed. Localizations of dipoles within the cortex were hypothesized to yield information pertaining to the processing of formant-specific linguistic information. A same/different discrimination task was administered to 20 adult participants (10 female and 10 male) between the ages of 18 and 26 years. Data from behavioral responses and ERPs were recorded. Results demonstrated that the MMN may be evoked by natural speech sounds. Grand-averaged brain maps of ERPs created for all stimulus pairs showed a large preattentive negativity. Additionally, amplitudes of the MMN were greatest for pairs of auditory stimuli in which spectral energy not corresponding to formant frequencies was digitally eliminated. Dipoles reconstructed from temporal ERP data were located in cortical areas known to support language and auditory processing. Significant differences between stimulus type and reaction time were also noted. The current investigation confirms that the MMN response is evoked by natural speech sounds and provides evidence for a theory of preattentive formant-based processing of speech sounds.
305

Liquid Dielectric Spectroscopy and Protein Simulation

Mellor, Brett Lee 05 July 2012 (has links) (PDF)
Protein electrical properties have been studied using dielectric relaxation measurements throughout the past century. These measurements have advanced both the theory and practice of liquid dielectric spectroscopy and have contributed to understanding of protein structure and function. In this dissertation, the relationship between permittivity measurements and underlying molecular mechanisms is explored. Also presented is a method to take molecular structures from the Protein Data Bank and subsequently estimate the charge distribution and dielectric relaxation properties of the proteins in solution. This process enables screening of target compounds for analysis by dielectric spectroscopy as well as better interpretation of protein relaxation data. For charge estimation, the shifted pKa values for amino acid residues are calculated using Poisson-Boltzmann solutions of the protein electrostatics over varying pH conditions. The estimated internal permittivity and estimated dipole moments through shifted pKa values are then calculated. Molecular dynamics simulations are additionally used to refine and approximate the solution-state conformation of the proteins. These calculations and simulations are verified with laboratory experiments over a large pH and frequency range (40 Hz to 110 MHz). The measurement apparatus is improved over previous designs by controlling temperature and limiting the electrode polarization effect through electrode surface preparation and adjustment of the cell's physical dimensions. The techniques developed in this dissertation can be used to analyze a wide variety of molecular phenomena experimentally and computationally, as demonstrated through various interactions amongst avidin, biotin, biotin-labeled and unlabeled bovine serum albumin, beta-lactoglobulin, and hen-lysozyme.
306

Determination and compensation of magnetic dipole moment inapplication for a scientific nanosatellite mission

Jéger, Csaba January 2017 (has links)
SEAM (Small Explorer for Advanced Missions) is a 3U CubeSat developedat KTH Royal Institute of Technology which will provide highqualityDC and AC magnetic field measurements of Earth’s magneticfield. The measurement system requires extended periods of timeup to 1000 seconds without active attitude control. The satellite willuse passive gravity gradient stabilization and dipole cancellation via aseparate set of magnetorquers to satisfy LVLH pointing requirementsduring the coasting phases. In this thesis a detailed model of satellitemagnetic moment is presented which includes dipole moment sourcesfrom on-board current loops. The attitude dynamics of the satelliteis characterized with simulations and a strategy is proposed to estimateand compensate the time-dependent magnetic dipole momentusing the dipole compensation magnetorquers and an offline estimationalgorithm. The algorithm is tested with simulated error sourcesand noise and was found to be able to robustly identify and cancel outthe satellite dipole to satisfy mission requirements. / SEAM (Small Explorer for Advanced Missions) är en 3U CubeSat utveckladpå KTH Kungliga tekniska högskolan för DC och AC magnetiskfältmätningarav Jordens magnetfält. Mätningar kräver längretidperioder upp till 1000 sekunder utan aktiv attitydstyrning. Satellitenkommer använda passiv tyngdkraftsgradientstabilisering samtmagnetisk dipolmomentkompensation med hjälp av ett separat setav magnetiska spolar för att upprätthålla orienteringskrav under perioderutan attitydstyrning. Denna rapport presenterar en detaljeradmodell av satellitens magnetiskt dipolmoment som inkluderar dipolmomentkällorfrån strömslingor ombord satelliten. Satellitens attityddynamikär karaktäriserad med simulationer och en strategi tas framför att estimera och kompensera det tidsberoende magnetiska dipolmomentetgenom att använda dipolkompensations magnetiska spolaroch en offline estimeringsalgoritm. Algoritmen är testad med simuleradefelkällor och brus och har funnits pålitlig för uppskattning avdipolmomentet och dess kompensation för att uppfylla missionskrav.
307

A Low-Cost Omnidirectional Antenna for Wi-Fi Access Points

McGough, Erin Patrick 05 June 2014 (has links)
No description available.
308

A DIRECTION FINDING SYSTEM USING LOG PERIODIC DIPOLE ANTENNAS IN A SPARSELY SAMPLED LINEAR ARRAY

Weldon, Jonathan Andrew 08 July 2010 (has links)
No description available.
309

Design and Optimization of a Planar Dual ¿¿¿¿¿¿¿¿¿¿¿¿“ Polarized, End ¿¿¿¿¿¿¿¿¿¿¿¿“ Fire UHF Antenna For a Handheld RFID Reader

Grover, Nikhil 22 June 2012 (has links)
No description available.
310

Capture Of Magnetic Inelastic Dark Matter In The Sun

McCreadie, Matthew 04 1900 (has links)
<p>We consider the phenomenology of the Magnetic Inelastic Dark Matter model, specifically its capture and subsequent annihilation in the Sun. By using the most recent data from the IceCube and Super- Kamiokande neutrino detection experiments, we are able to put limits on the dipole moment of this WIMP candidate for masses ranging from 100 GeV to 10 TeV with a mass-splitting ranging from 0 to 200 keV. Limits are placed on a 100 GeV WIMP with magnetic dipole interactions as low as 2.6 × 10^−6µN for an inelastic parameter of 100 keV</p> / Master of Science (MSc)

Page generated in 0.0371 seconds