1 |
Generation of non-viral, transgene-free hepatocyte like cells with piggyBac transposon. / 非ウィルスベクターであるpiggyBac transposonを用いた挿入遺伝子の遺残のない肝細胞様細胞の作製Katayama, Hokahiro 24 July 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20605号 / 医博第4254号 / 新制||医||1023(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 川口 義弥, 教授 浅野 雅秀, 教授 中川 一路 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
2 |
Cell Reprogramming Technologies for Treatment and Understanding of Genetic Disorders of MyelinLager, Angela Marie 03 June 2015 (has links)
No description available.
|
3 |
MAPPING BRAIN CIRCUITS IN HEALTH AND DISEASEQiuyu Wu (6803957) 02 August 2019 (has links)
<p>Intricate neural circuits
underlie all brain functions. However, these neural circuits are highly
dynamic. The ability to change, or the plasticity, of the brain has long been
demonstrated at the level of isolated single synapses under artificial conditions.
Circuit organization and brain function has been extensively studied by
correlating neuronal activity with information input. The primary visual cortex
has become an important model brain region for the study of sensory processing,
in large part due to the ease of manipulating visual stimuli. Much has been
learned from studies of visual cortex focused on understanding the
signal-processing of visual inputs within neural circuits. Many of these
findings are generalizable to other sensory systems and other regions of
cortex. However, few studies have directly demonstrated the orchestrated
neural-circuit plasticity occurring during behavioral experience. </p>
<p>It is vital to
measure the precise circuit connectivity and to quantitatively characterize
experience-dependent circuit plasticity to understand the processes of learning
and memory formation. Moreover, it is important to study how circuit
connectivity and plasticity in neurological and psychiatric disease states
deviates from that in healthy brains. By understanding the impact of disease on
circuit plasticity, it may be possible to develop therapeutic interventions to
alleviate significant neurological and psychiatric morbidity. In the case of
neural trauma or ischemic injury, where neurons and their connections are lost,
functional recovery relies on neural-circuit repair. Evaluating whether neurons
are reconnected into the local circuitry to re-establish the lost connectivity
is crucial for guiding therapeutic development.</p>
<p>There are
several major technical hurdles for studies aiming to quantify circuit
connectivity. First, the lack of high-specificity circuit stimulation methods
and second, the low throughput of the gold-standard patch-clamp technique for
measuring synaptic events have limited progress in this area. To address these
problems, we first engineered the patch-clamp experimental system to automate
the patching process, increasing the throughput and consistency of patch-clamp
electrophysiology while retaining compatibility of the system for experiments
in <i>ex vivo </i>brain slices. We also took
advantage of optogenetics, the technology that enables control of neural
activity with light through ectopic expression of genetically encoded
photo-sensitive channels in targeted neuronal populations. Combining
optogenetic stimulation of pre-synaptic axonal terminals and whole-cell
patch-clamp recording of post-synaptic currents, we mapped the distribution and
strength of synaptic connections from a specific group of neurons onto a single
cell. With the improved patch-clamp efficiency using our automated system, we
efficiently mapped a significant number of neurons in different experimental
conditions/treatments. This approach yielded large datasets, with sufficient
power to make meaningful comparisons between groups.</p>
<p>Using this
method, we first studied visual experience-dependent circuit plasticity in the
primary visual cortex. We measured the connectivity of local feedback and
recurrent neural projections in a Fragile X syndrome mouse model and their
healthy counterparts, with or without a specific visual experience. We found
that repeated visual experience led to increased excitatory drive onto
inhibitory interneurons and intrinsically bursting neurons in healthy animals.
Potentiation at these synapses was absent or abnormal in Fragile X animals.
Furthermore, recurrent excitatory input onto regular spiking neurons within the
same layer remained stable in healthy animals but was depressed in Fragile X
animals following repeated visual experience. These results support the
hypothesis that visual experience leads to selective circuit plasticity which
may underlie the mechanism of visual learning. This circuit plasticity process
is impaired in a mouse model of Fragile X syndrome. </p>
<p>In a separate
study, in collaboration with the laboratory of Dr. Gong Chen, we applied the
circuit-mapping method to measure the effect of a novel brain-repair therapy on
functional circuit recovery following ischemic injury, which locally kills
neurons and creates a glial scar. By directly reprogramming astrocytes into
neurons within the region of the glial scar, this gene-therapy technology aims
to restore the local circuit and thereby dramatically improve behavioral
function after devastating neurological injury. We found that direct
reprogramming converted astrocytes into neurons, and importantly, we found that
these newly reprogrammed neurons integrated appropriately into the local
circuit. The reprogramming also improved connections between surviving endogenous
neurons at the injury site toward normal healthy levels of connectivity.
Connections formed onto the newly reprogrammed neurons spontaneously remodeled,
the process of which resembled neural development. By directly demonstrating
functional connectivity of newly reprogrammed neurons, our results suggest that
this direct reprogramming gene-therapy technology holds significant promise for
future clinical application to restore circuit connectivity and neurological
function following brain injury.</p>
|
4 |
Direct reprogramming of fibroblasts into Schwann cellsAlves Gomes Albertti, Leticia 07 1900 (has links)
Les cellules de Schwann jouent un rôle crucial dans la réparation et la régénération des nerfs périphériques en soutenant la croissance axonale et en libérant des facteurs neurotrophiques essentiels. La capacité de convertir des fibroblastes en cellules de Schwann est particulièrement intéressante dans le contexte de lésion d’un nerf périphérique, où la restauration de la fonction nerveuse est un objectif critique. Cette étude examine la reprogrammation directe des fibroblastes en cellules de Schwann, en utilisant les facteurs de transcription SOX10 et EGR2 via la transduction lentivirale. Nous avons testé divers milieux de culture connus pour identifier les conditions de conversion optimales, et avons établi qu'une multiplicité d'infection de 300 assurait une reprogrammation robuste. Cependant, maintenir la viabilité cellulaire au-delà de dix jours a présenté un défi significatif. Pour résoudre ce problème, nous avons développé un nouveau milieu de culture, que nous avons appelé Schwann Cell Medium 4 (SCM4), incorporant de petites molécules connues pour être impliquées dans le développement des cellules de Schwann. SCM4 a considérablement amélioré l'expression des marqueurs clés des cellules de Schwann, y compris SOX10, EGR2, Growth Associated Protein 43, le récepteur neurotrophique P75, et la protéine zéro de la myéline, tout en améliorant la survie globale des cellules. De plus, SCM4 a favorisé une libération plus élevée de BDNF, un facteur neurotrophique crucial pour le soutien et le développement neuronal. Les résultats obtenus avec les cellules converties dans le SCM4 sont comparables à ceux obtenus avec des cellules de Schwann dérivées de cellules souches pluripotentes induites et des cellules de Schwann humaines primaires, démontrant que notre protocole produit des cellules s’apparentant aux cellules de Schwann. Ces résultats soulignent l'importance de conditions de culture optimisées pour la reprogrammation des cellules de Schwann et offrent des perspectives prometteuses pour de futures applications cliniques dans le traitement des maladies neurodégénératives et des lésions nerveuses périphériques. / Schwann cells play a crucial role in the repair and regeneration of peripheral nerves by providing support for axonal growth and releasing essential neurotrophic factors. The ability to convert fibroblasts into Schwann cells is particularly relevant in the context of peripheral nerve injury, where the restoration of nerve function is a critical goal. This study investigates the direct reprogramming of fibroblasts into Schwann cells, employing the transcription factors SOX10 and EGR2 through lentiviral transduction. We tested various culture media described in the literature to identify the optimal reprogramming conditions, and have determined that a multiplicity of infection of 300 ensured robust reprogramming. However, maintaining cell viability beyond ten days presented a significant challenge. To address this issue, we developed a new culture medium, which we termed Schwann Cell Medium 4 (SCM4), incorporating small molecules known to be involved in Schwann cell development. SCM4 markedly enhanced the expression of key Schwann cell markers, including SOX10, EGR2, Growth Associated Protein 43, P75 Neurotrophin Receptor, and Myelin Protein Zero, and also improved overall cell survival. Furthermore, SCM4 promoted a higher release of BDNF, a critical neurotrophic factor for neuronal survival and development. The results obtained with SCM4 were compared to those obtained from Schwann cells derived from induced pluripotent stem cells and primary human Schwann cells, demonstrating that our protocol produced a comparable cell product. These findings underscore the importance of optimized culture conditions for Schwann cell reprogramming and offer promising prospects for future clinical applications in the treatment of neurodegenerative diseases and peripheral nerve injuries.
|
5 |
Direct Reprogramming of distinct cells into GABAergic motor neurons in C. elegansKazmierczak, Marlon 15 March 2019 (has links)
Der Gen-Knockdown mittels RNAi hat sich als essentiell erwiesen, um Inhibitoren der induzierten Transdifferenzierung in C. elegans zu identifizieren (Tursun et al., 2011). Bakterienstämme, die dsRNA exprimieren, das die Expression spezifischer Gene mindert, können dem Wurm direkt zugefüttert werden, um einen genomweiten RNAi-screen der insgesamt 20.000 Gene in C. elegans durchzuführen. Allerdings werden die meisten biologischen Prozese durch mehr als ein Gen reguliert, was den Bedarf nach einer Methode generiert, die es erlaubt, zwei oder mehr Gene gleichzeitig herunter zu regulieren, um die Steuerung biologischer Prozesse studieren zu können. Die derzeitig vorhandenen Methoden liefern entweder nicht reproduzierbare Ergebnisse oder sind nicht skalierbar. Wir nutzen baktierelle Konjugation, die es durch ein konjugatives Plasmid ermöglicht Bakterienzellen zu generieren, die zwei verschiedene RNAi-Plasmide enthalten. Das Ziel war es, modifizierte RNAi-Donor-Plasmide mittels bakterieller Konjugation an eine Vielzahl anderer Bakterienzellen zu übertragen, die bereits ein anderes RNAi-Plasmid enthalten und dies dann im Hochdurchsatzverfahren durchführen zu können. Um Enhancer induzierter Expression von unc-25::gfp in der Keimbahn, ermöglicht durch den Knockdown des Histonchaperons LIN-53 (RbAp46/48 in Menschen), zu finden, wurden RNAi-Klone generiert, die gleichzeitig lin-53 als auch eines von insgesamt 800 verschiedenen Chromatin-bezogenen Gene herunter regulieren. Dabei identifizierten wir RBBP-5, Mitglied des Set1/ MLL-Methyltransferase-Komplexes, als neuen Barrierefaktor der induzierten Transdifferenzierung. RBBP-5 agiert dabei mutmaßlich parallel zu LIN-53. Doppelte RNAi, ermöglicht durch bakterielle Konjugation, erlaubt den simultanen Knockdown zweier oder mehr Gene, um genetische Interaktionen studieren zu können und erweitert damit die Einsatzmöglichkeiten von RNAi-Screens, um untereinander verbundene biologische Prozesse zu studieren. / The knock down of genes by RNAi has been fundamental to identify inhibitors of induced cell transdifferentiation in C. elegans (Tursun et al., 2011). Bacteria strains expressing dsRNA that target specific genes can be fed to the worm allowing straightforward whole-genome RNAi screens of the 20,000 genes in theC. elegans genome. However, many biological processes are regulated by more than one gene raising the need for simultaneous knock down of two or more genes to more fully interrogate the regulation of complex biological processes. Two approaches are currently available for double RNAi knockdown, − two bacteria strains expressing specific dsRNA can be mixed and grown together and fed simultaneously, which gives highly variable results. Alternatively, a new bacterial clone can be generated carrying a plasmid on which two RNAi targets of interest are 'stitched' together, which is not scalable. To address this challenge, we have developed a protocol using bacterial conjugation mediated by the 'Fertility Factor' (F) Episome in order to combine two different RNAi plasmids in a single bacterium. The objective was to be able to transfer a single RNAi plasmid to a large number of bacterial cells carrying different RNAi clones in one step in a high-throughput manner for large scale 'double' or even 'triple' RNAi screens. To find enhancers of induced unc-25::gfp expression in the germ line enabled by the depletion of histone chaperone LIN-53 (RbAp46/48 in humans), double RNAi clones targeting lin-53 and a total of 800 chromatin-related genes were generated and screened. We identified the Set1/MLL methyltransferase complex member RBBP-5 as a novel reprogramming barrier that putatively acts in a parallel pathway to LIN-53. Double RNAi by conjugation permits to reliably knock down two genes simultaneously in order to study genetic interactions at a genome-wide level, thus further increasing the versatility of RNAi screens to investigate interconnected biological processes.
|
6 |
Transcriptome Analysis of MRG-1-deficient Caenorhabditis elegans animals using short and long read sequencingBlume, Alexander 21 July 2022 (has links)
Das Schicksal einer differenzierten Zelle wird durch epigenetische Grenzen bestimmt und mittels Schutzmechanismen bewahrt, wodurch die Reprogrammierung in andere Zelltypen verhindert wird.
In dieser Studie haben wir ein Chromatin-regulierendes Protein, das konservierte MORF4-Verwandte-Gen (MRG) Protein MRG-1, als Barriere für die Reprogrammierung von Zellen in Caenorhabditis elegans (C. elegans) identifiziert. RNAi gegen MRG-1 ermöglicht es uns Keimzellen mittels Überexpression des Neuronen-induzierenden Transkriptionsfaktors CHE-1 in neuronenartige Zellen umzuwandeln.
Mittels ChIP-seq fanden wir heraus, dass MRG-1 unterschiedliche DNA Bindungsstellen in den Keimbahnen und somatischen Geweben von C. elegans aufweist. Wir konnten zeigen, dass MRG-1 besonders stark am Genkörper angereichert ist und sich hauptsächlich auf Genen befindet, welche die aktive Histonmarkierung H3K36me3 tragen. Die Charakterisierung der Protein-Protein-Interaktionspartner von MRG-1 mittels Co-IP/MS ergab, dass MRG-1 mit der Histon-H3K9-Methyltransferase SET-26 und der b-gebundenen N-Acetylglucosamin Transferase OGT-1 zusammenarbeitet, um die Umwandlung von Keimzellen in Neuronen zu verhindern.
Basierend auf RNA-Seq Experimenten in mrg-1-Mutanten und Wildtyp konnten wir weitreichende Veränderungen der Genexpression mit Auswirkung auf Signalwege wie den Notch Signalweg enthüllen, welcher bekanntermaßen die Zelltyp-Reprogrammierung fördern.
Mittels Long-Read basiertem RNA-seq in mrg-1-Mutanten und der Integration entsprechender ChIP-seq Daten habe ich die Beteiligung von MRG-1 am prä-mRNA-Spleißen in C. elegans gezeigt, analog zum Säugetierortholog MRG15.
Diese Ergebnisse weisen darauf hin, dass MRG-1 durch die Regulierung des Chromatins und die Sicherstellung des korrekten Spleißens die Expressionsniveaus kritischer Gene und Signalwege aufrechterhält, um eine ordnungsgemäße Keimbahnentwicklung zu gewährleisten und das Schicksal der Keimzellen zu schützen. / Das Schicksal einer differenzierten Zelle wird durch epigenetische Grenzen bestimmt und mittels Schutzmechanismen bewahrt, wodurch die Reprogrammierung in andere Zelltypen verhindert wird.
In dieser Studie haben wir ein Chromatin-regulierendes Protein, das konservierte MORF4-Verwandte-Gen (MRG) Protein MRG-1, als Barriere für die Reprogrammierung von Zellen in Caenorhabditis elegans (C. elegans) identifiziert. RNAi gegen MRG-1 ermöglicht es uns Keimzellen mittels Überexpression des Neuronen-induzierenden Transkriptionsfaktors CHE-1 in neuronenartige Zellen umzuwandeln.
Mittels ChIP-seq fanden wir heraus, dass MRG-1 unterschiedliche DNA Bindungsstellen in den Keimbahnen und somatischen Geweben von C. elegans aufweist. Wir konnten zeigen, dass MRG-1 besonders stark am Genkörper angereichert ist und sich hauptsächlich auf Genen befindet, welche die aktive Histonmarkierung H3K36me3 tragen. Die Charakterisierung der Protein-Protein-Interaktionspartner von MRG-1 mittels Co-IP/MS ergab, dass MRG-1 mit der Histon-H3K9-Methyltransferase SET-26 und der b-gebundenen N-Acetylglucosamin Transferase OGT-1 zusammenarbeitet, um die Umwandlung von Keimzellen in Neuronen zu verhindern.
Basierend auf RNA-Seq Experimenten in mrg-1-Mutanten und Wildtyp konnten wir weitreichende Veränderungen der Genexpression mit Auswirkung auf Signalwege wie den Notch Signalweg enthüllen, welcher bekanntermaßen die Zelltyp-Reprogrammierung fördern.
Mittels Long-Read basiertem RNA-seq in mrg-1-Mutanten und der Integration entsprechender ChIP-seq Daten habe ich die Beteiligung von MRG-1 am prä-mRNA-Spleißen in C. elegans gezeigt, analog zum Säugetierortholog MRG15.
Diese Ergebnisse weisen darauf hin, dass MRG-1 durch die Regulierung des Chromatins und die Sicherstellung des korrekten Spleißens die Expressionsniveaus kritischer Gene und Signalwege aufrechterhält, um eine ordnungsgemäße Keimbahnentwicklung zu gewährleisten und das Schicksal der Keimzellen zu schützen.
|
Page generated in 0.1021 seconds