1 |
A Comparison of Discrete and Continuous Survival AnalysisKim, Sunha 08 May 2014 (has links)
There has been confusion in choosing a proper survival model between two popular survival models of discrete and continuous survival analysis. This study aimed to provide empirical outcomes of two survival models in educational contexts and suggest a guideline for researchers who should adopt a suitable survival model. For the model specification, the study paid attention to three factors of time metrics, censoring proportions, and sample sizes. To arrive at comprehensive understanding of the three factors, the study investigated the separate and combined effect of these factors. Furthermore, to understand the interaction mechanism of those factors, this study examined the role of the factors to determine hazard rates which have been known to cause the discrepancies between discrete and continuous survival models. To provide empirical evidence from different combinations of the factors in the use of survival analysis, this study built a series of discrete and continuous survival models using secondary data and simulated data. In the first study, using empirical data from the National Longitudinal Survey of Youth 1997 (NLSY97), this study compared analyses results from the two models having different sizes of time metrics. In the second study, by having various specifications with combination of two other factors of censoring proportions and sample sizes, this study simulated datasets to build two models and compared the analysis results. The major finding of the study is that discrete models are recommended in the conditions of large units of time metrics, low censoring proportion, or small sample sizes. Particularly, discrete model produced better outcomes for conditions with low censoring proportion (20%) and small number (i.e., four) of large time metrics (i.e., year) regardless of sample sizes. Close examination of those conditions of time metrics, censoring proportion, and sample sizes showed that the conditions resulted into high hazards (i.e., 0.20). In conclusion, to determine a proper model, it is recommended to examine hazards of each of the time units with the specific factors of time metrics, censoring proportion and sample sizes. / Ph. D.
|
2 |
Discrete Modeling of Cell Island MigrationLimestoll, Scott R. January 2009 (has links)
No description available.
|
3 |
衝撃波流れによって形成される粉塵雲の数値シミュレーション土井, 克則, DOI, Katsunori, MEN'SHOV, Igor, 中村, 佳朗, NAKAMURA, Yoshiaki 03 1900 (has links)
No description available.
|
4 |
Analýza a optimalizace efektivnosti zemědělsko-dřevozpracujícího podniku (reálná situace) / Analyses and optimization of efficiency in agriculture and wood-working companyJágerová, Tereza January 2008 (has links)
This thesis aspires to optimize the processes in agriculture and wood-working company and to propose some changes if needed. At first, it is wood-working branch which is analyzed. The intent is to find an optimal route to distribute pallets and afterwards freight the vehicle by sawn wood and return back with. This is some modification of travelling salesman problem with more than one salesman and more centers including the condition that the travelling is dynamic in time and that only selected clients are visited. The agriculture problem is more complicated and complex because the model aims to find an optimal portfolio of diverse animal and vegetal production influenced by many factors and some of them are mentioned below. The agriculture model includes for example the stochastic character of weather and the condition that the herd of cattle should be stable.
|
5 |
A Discrete Model Approach to Biofilm GrowthSimpson, Andrew E. 14 August 2012 (has links)
No description available.
|
6 |
AC loss in superconducting composites: continuous and discrete models for round and rectangular cross sections, and comparisons to experimentsLee, Eunguk 10 March 2004 (has links)
No description available.
|
7 |
A Mathematical Model of the Iron Regulatory Network in Aspergilus FumigatusBrandon, Madison Gayle 23 May 2013 (has links)
Aspergillus fumigatus is an opportunistic fungal pathogen responsible for invasive aspergillosis in immunocompromised individuals. Current detection and treatment strategies for invasive aspergillosis, as well as other invasive fungal infections, are poor. Iron has been shown to be essential for Aspergillus fumigatus virulence. Furthermore, mechanisms in the iron regulatory network are believed to be potential drug targets since iron management in fungi is vastly different from that in mammals and other eukaryotes. Therefore a better understanding of iron homeostasis in Aspergillus fumigatus could help improve drug therapies for invasive aspergillosis. In this research a discrete model of iron uptake, storage and utilization in Aspergillus fumigatus with particular focus on siderophore-mediated iron acquisition is constructed. The model predicts oscillations in gene expression as the fungus adapts to a switch from an iron depleted to an iron replete environment. The model is validated via in vitro experiments. / Master of Science
|
8 |
Modélisation et simulation de la dispersion de fluide en milieu fortement hétérogène. / Modeling and Numerical Simulation of Fluid Dispersion in Strongly Heterogeneous MediaHank, Sarah 16 November 2012 (has links)
Ces travaux portent sur la modélisation et la simulation numérique de la dispersion de matériaux nocifs (pulvérisations liquides ou gazeuses) en milieu urbain ou naturel (attentat ou explosion accidentelle survenant en zone peuplée, fuites de produits toxiques gazeux ou liquides, éclatement de réservoir..). Afin de prédire ces risques un outils de simulation tridimensionnel a été développé. Celui-ci est basé sur un modèle de milieu hétérogène afin de traiter des phénomènes dont la durée et les distances associées peuvent être très grandes. La topographie des milieux étudiées est prise en compte grâce à des données numériques d'´elévation ainsi que les conditions météo permettant l'utilisation de profils de température et de vent complexes. Les transferts de chaleur et de masse sont considérés, notamment au niveau des obstacles. Un schéma numérique d'ordre élevé en temps et en espace est utilisé pour calculer les concentrations massiques de polluants. Par ailleurs, un modèle d'écoulement gaz-particule a été développé et implémenté dans le code de calcul. L'instabilité d'une couche de fluide soumise à un important gradient de pression est également étudiée, ceci afin de mieux comprendre et de caractériser les conditions initiales à utiliser pour ce type d'écoulement, impliquant des couches de particules. / This work deals with the modeling and the numerical simulation of the dispersion of toxic cloud of dropplets or gas in uneven geometry such as urban environment, industrial plants and hilly environment. Examples of phenomena under study are the dispersion of chemical products from damaged vessels, gas diffusion in an urban environment under explosion conditions, shock wave propagation in urban environment etc. A 3D simulation code has been developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation has been developed. When dealing with large scale domains, such as hilly natural environment, the topography is reconstructed with the help of numerical elevation data. Meteorological conditions are also considered, concerning temperature and wind velocity profiles. Heat and mass transfers on subscale objects, such as buildings are studied. A high order numerical scheme in space and time is used to compute mass concentration of pollutant. A two-phase model for dilute gas-particles flow has been developed and implemented in the 3D simulation code. The instability of a fluid layer appearing under high pressure gradient is also studied. This analysis allows us a better understanding of initial conditions for similar problems involving particles layer.
|
9 |
Modelagem da fratura do concreto armado por meio de interfaces coesivas / Modelling of fracture of reinforced concrete beams using cohesive interfacesSilva Neto, Conrado Praxedes January 2015 (has links)
O presente trabalho visa analisar o comportamento estrutural de vigas de concreto armado em flexão, por meio de uma modelagem discreta de fratura com o uso de interfaces coesivas. Avaliou-se, neste estudo, a influência da utilização de elementos de interface entre todos os elementos de concreto da malha de elementos finitos, representando o dano de forma generalizada. Desta forma, é possível analisar desde a alteração na resposta estrutural por meio do gráfico entre força aplicada e deslocamento no centro do vão das vigas, bem como o surgimento e propagação de fissuras ao longo de todo o comprimento das mesmas. Foram utilizadas também leis específicas para simular o comportamento de aderência entre o concreto e o aço através de elementos de aderência. O trabalho envolveu o estudo de diferentes situações, a partir da simulação de vigas com diversas configurações, sendo analisada também a sensibilidade do modelo às variações dos parâmetros de entrada, que abrangem as propriedades dos materiais e os parâmetros numéricos do modelo coesivo utilizado. Os resultados mostraram que metodologia utilizada é capaz de representar importantes fenômenos como a perda de rigidez associada a fissuração no concreto, além de reproduzir a fissuração de maneira adequada destes elementos estruturais. / The aim of this work is to analyze the structural behavior of reinforced concrete beams in bending, by means of a discrete modeling using cohesive interfaces. It was evaluated the influence of using interface elements between all concrete elements of the finite element mesh, representing the damage in all the structural element. From that, it is possible to analyze the alteration on the structural behavior on the applied load versus midspan deflection of the beams, as well as the propagation of cracks along the beam length. It was also used specific laws to simulate the adherence between the concrete and steel bars. The work involved the study of the sensibility of the model to the variations of the input parameters, which included the material properties and the numeric parameters of the proposed model. The results showed that the methodology used is capable of representing important phenomena like the rigidity loss associated to the concrete cracking, as well as reproducing the cracking itself accordingly.
|
10 |
Modelagem da fratura do concreto armado por meio de interfaces coesivas / Modelling of fracture of reinforced concrete beams using cohesive interfacesSilva Neto, Conrado Praxedes January 2015 (has links)
O presente trabalho visa analisar o comportamento estrutural de vigas de concreto armado em flexão, por meio de uma modelagem discreta de fratura com o uso de interfaces coesivas. Avaliou-se, neste estudo, a influência da utilização de elementos de interface entre todos os elementos de concreto da malha de elementos finitos, representando o dano de forma generalizada. Desta forma, é possível analisar desde a alteração na resposta estrutural por meio do gráfico entre força aplicada e deslocamento no centro do vão das vigas, bem como o surgimento e propagação de fissuras ao longo de todo o comprimento das mesmas. Foram utilizadas também leis específicas para simular o comportamento de aderência entre o concreto e o aço através de elementos de aderência. O trabalho envolveu o estudo de diferentes situações, a partir da simulação de vigas com diversas configurações, sendo analisada também a sensibilidade do modelo às variações dos parâmetros de entrada, que abrangem as propriedades dos materiais e os parâmetros numéricos do modelo coesivo utilizado. Os resultados mostraram que metodologia utilizada é capaz de representar importantes fenômenos como a perda de rigidez associada a fissuração no concreto, além de reproduzir a fissuração de maneira adequada destes elementos estruturais. / The aim of this work is to analyze the structural behavior of reinforced concrete beams in bending, by means of a discrete modeling using cohesive interfaces. It was evaluated the influence of using interface elements between all concrete elements of the finite element mesh, representing the damage in all the structural element. From that, it is possible to analyze the alteration on the structural behavior on the applied load versus midspan deflection of the beams, as well as the propagation of cracks along the beam length. It was also used specific laws to simulate the adherence between the concrete and steel bars. The work involved the study of the sensibility of the model to the variations of the input parameters, which included the material properties and the numeric parameters of the proposed model. The results showed that the methodology used is capable of representing important phenomena like the rigidity loss associated to the concrete cracking, as well as reproducing the cracking itself accordingly.
|
Page generated in 0.0897 seconds