Spelling suggestions: "subject:"discretetime markov chain"" "subject:"discretetime darkov chain""
1 |
Modeling Student Enrollment at ETSU Using a Discrete-Time Markov Chain ModelMamudu, Lohuwa 01 December 2017 (has links) (PDF)
Discrete-time Markov chain models can be used to make future predictions in many important fields including education. Government and educational institutions today are concerned about college enrollment and what impacts the number of students enrolling. One challenge is how to make an accurate prediction about student enrollment so institutions can plan appropriately. In this thesis, we model student enrollment at East Tennessee State University (ETSU) with a discrete-time Markov chain model developed using ETSU student data from Fall 2008 to Spring 2017. In this thesis, we focus on the progression from one level to another within the university system including graduation and dropout probabilities as indicated by the data. We further include the probability that a student will leave school for a limited period of time and then return to the institution. We conclude with a simulation of the model and a comparison to the trends seen in the data.
|
2 |
The Identificaton Of A Bivariate Markov Chain Market ModelYildirak, Sahap Kasirga 01 January 2004 (has links) (PDF)
This work is an extension of the classical Cox-Ross-Rubinstein
discrete time market model in which only one risky asset is
considered. We introduce another risky asset into the model.
Moreover, the random structure of the asset price sequence is
generated by bivariate finite state Markov chain. Then, the
interest rate varies over time as it is the function of generating
sequences. We discuss how the model can be adapted to the real
data. Finally, we illustrate sample implementations to give a
better idea about the use of the model.
|
3 |
Využití teorie hromadné obsluhy při návrhu a optimalizaci paketových sítí / Queueing theory utilization in packet network design and optimization processRýzner, Zdeněk January 2011 (has links)
This master's thesis deals with queueing theory and its application in designing node models in packet-switched network. There are described general principles of designing queueing theory models and its mathematical background. Further simulator of packet delay in network was created. This application implements two described models - M/M/1 and M/G/1. Application can be used for simulating network nodes and obtaining basic network characteristics like packet delay or packet loss. Next, lab exercise was created, in that exercise students familiarize themselves with basic concepts of queueing theory and examine both analytical and simulation approach to solving queueing systems.
|
4 |
Highway Development Decision-Making Under Uncertainty: Analysis, Critique and AdvancementEl-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous.
In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model.
This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives.
Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
|
5 |
Highway Development Decision-Making Under Uncertainty: Analysis, Critique and AdvancementEl-Khatib, Mayar January 2010 (has links)
While decision-making under uncertainty is a major universal problem, its implications in the field of transportation systems are especially enormous; where the benefits of right decisions are tremendous, the consequences of wrong ones are potentially disastrous.
In the realm of highway systems, decisions related to the highway configuration (number of lanes, right of way, etc.) need to incorporate both the traffic demand and land price uncertainties. In the literature, these uncertainties have generally been modeled using the Geometric Brownian Motion (GBM) process, which has been used extensively in modeling many other real life phenomena. But few scholars, including those who used the GBM in highway configuration decisions, have offered any rigorous justification for the use of this model.
This thesis attempts to offer a detailed analysis of various aspects of transportation systems in relation to decision-making. It reveals some general insights as well as a new concept that extends the notion of opportunity cost to situations where wrong decisions could be made. Claiming deficiency of the GBM model, it also introduces a new formulation that utilizes a large and flexible parametric family of jump models (i.e., Lévy processes). To validate this claim, data related to traffic demand and land prices were collected and analyzed to reveal that their distributions, heavy-tailed and asymmetric, do not match well with the GBM model. As a remedy, this research used the Merton, Kou, and negative inverse Gaussian Lévy processes as possible alternatives.
Though the results show indifference in relation to final decisions among the models, mathematically, they improve the precision of uncertainty models and the decision-making process. This furthers the quest for optimality in highway projects and beyond.
|
Page generated in 0.0626 seconds