121 |
Kontrolle semilinearer elliptischer Randwertprobleme mit variationeller DiskretisierungMatthes, Ulrich 11 December 2009 (has links)
Steuerungsprobleme treten in vielen Anwendungen in Naturwissenschaft und Technik auf. In dieser Arbeit werden Optimalsteuerungsprobleme mit semilinearen elliptischen partiellen Differentialgleichungen als Nebenbedingungen untersucht. Die Kontrolle wird durch Kontrollschranken als Ungleichungsnebenbedingungen eingeschränkt.
Dabei ist die Zielfunktion quadratisch in der Kontrolle. Die Lösung des Optimierungsproblems kann dann durch die Projektionsbedingung mit Hilfe des adjungierten Zustandes dargestellt werden.
Ein neuer Zugang ist die variationelle Diskretisierung. Bei dieser wird nur der Zustand und der adjungierte Zustand diskretisiert, nicht aber der Raum der Kontrollen. Dieser Zugang erlaubt höhere Konvergenzraten für die Kontrolle für kontrollrestingierte Probleme als bei einer Diskretisierung des Kontrollraumes. Die Projektionsbedingung für das variationell diskretisierte Problem ist dabei auf die gleiche zulässige Menge wie beim nicht diskretisierten Problem.
In der vorliegenden Arbeit wird die Methode der variationellen Diskretisierung auf semilineare elliptische Optimalkontrollprobleme angewendet und Fehlerabschätzungen für die Kontrollen bewiesen. Dabei wird hauptsächlich auf die verteilte Steuerung Wert gelegt, aber auch die Neumann-Randsteuerung mitbehandelt.
Nach einem Überblick über die Literatur wird die Aufgabenstellung mit den Voraussetzungen aufgeschrieben und die Optimalitätsbedingungen angegeben.
Danach wird die Existenz einer Lösung, sowie die Konvergenz der diskreten Lösungen gegen eine kontinuierliche Lösung gezeigt. Außerdem werden Finite-Elemente-Konvergenzordnungen angegeben.
Dann werden optimale Fehlerabschätzungen in verschiedenen Normen für die variationelle Kontrolle bewiesen.
Insbesondere werden die Fehlerabschätzung in Abhängigkeit vom Finite-Elemente-Fehler des Zustandes und des adjungierten Zustandes angegeben.
Dabei wird die nichtlineare Fixpunktgleichung mittels semismooth Newtonverfahrens linearisiert. Das Newtonverfahren wird auch für die numerische Lösung des Problems eingesetzt. Die Voraussetzung für die Konvergenzordnung ist dabei nicht die SSC, die hinreichende Bedingung zweiter Ordnung, welche eine lokale Konvexität in der Zielfunktion impliziert, sondern die Invertierbarkeit des Newtonoperators. Dies ist eine stationäre Bedingung in der optimalen Kontrolle.
Dabei wird nur benötigt, dass der Rand der aktiven Menge eine Nullmenge ist und die Invertierbarkeit des Newtonoperators in der Optimallösung.
Der Schaudersche Fixpunktsatz wird benutzt, um für die Newtongleichung die Existenz eines Fixpunktes innerhalb der gewünschten Umgebung zu beweisen. Außerdem wird die Eindeutigkeit eines solchen Fixpunktes für eine gegebene Triangulation bei hinreichend feiner Diskretisierung gezeigt.
Das Ergebnis ist, dass die Konvergenzrate nur durch die Finite-Elemente-Konvergenzraten von Zustand und adjungiertem Zustand beschränkt wird. Diese Rate wird nicht nur durch die Ansatzfunktionen, sondern auch durch die Glattheit der rechten Seite beschränkt, so dass der Knick am Rand der aktiven Menge hier ein Grenze setzt.
Außerdem wird die Implementation des semismooth Newtonverfahrens für den unendlichdimensionalen Kontrollraum für die variationelle Diskretisierung erläutert. Dabei wird besonders auf den zweidimensionalen verteilten Fall eingegangen.
Es werden die bewiesenen Konvergenzraten an einigen semilinearen und linearen Beispielen mittels der variationellen Diskretisierung demonstriert.
Es entsprechen sich die bei den analytische Beweisen und der numerischen Lösung eingesetzten Verfahren, die Fixpunktiteration sowie das nach Kontrolle oder adjungiertem Zustand aufgelöste Newtonverfahren. Dabei sind einige Besonderheiten bei der Implementation zu beachten, beispielsweise darf die Kontrolle nicht inkrementell mit dem Newtonverfahren oder der Fixpunktiteration aufdatiert werden, sondern muss in jedem Schritt neu berechnet werden.
|
122 |
Numerical Investigation on Spherical Harmonic Synthesis and AnalysisBärlund, Johnny January 2015 (has links)
In this thesis work the accuracy of the spherical harmonic synthesis and analysis are investigated, by simulated numerical studies.The main idea is to investigate the loss of accuracy, in the geopotential coeffcients, by the following testing method. We start with a synthesis calculation, using the coefficients(EGM2008), to calculate geoid heights on a regular grid. Those geoid heights are then used in an analysis calculation to obtain a new set of coeffcients, which are in turn used to derive a new set of geoid heights. The difference between those two sets of geoid heights will be analyzed to assess the accuracy of the synthesis and analysis calculations.The tests will be conducted with both point-values and area-means in the blocks in the grid. The area-means are constructed in some different ways and will also be compared to the mean value from 10000 point values as separate tests. Numerical results from this investigation show there are signifi
cant systematic errors in the geoid heights computed by spherical harmonic synthesis and analysis, sometimes reaching as high as several meters. Those big errors are most common at the polar regions and at the mid-latitude regions.
|
123 |
La méthode LS-STAG avec schémas diamants pour l'approximation de la diffusion : une méthode de type "cut-cell" précise et efficace pour les écoulements incompressibles en géométries 3D complexes / The LS-STAG method with diamond schemes for diffusion approximation : an accurate and efficient cut-cell method for incompressible flows in tridimensional geometriesPortelenelle, Brice 06 November 2019 (has links)
La méthode LS-STAG est une méthode cartésienne pour le calcul d’écoulements incompressibles en géométries complexes, qui propose une discrétisation précise des équations de Navier-Stokes dans les cut-cells, cellules polyédriques de forme complexe créées par l’intersection du maillage cartésien avec la frontière du solide immergé. Originalement développée pour les géométries 2D, son extension aux géométries 3D se heurte au défi posé par le grand nombre de types de cut-cells (108) à considérer. Récemment, la méthode LS-STAG a été étendue aux géométries complexes 3D dont la frontière est parallèle à l’un des axes du repère cartésien, où sont uniquement présentes les contreparties extrudées des cut-cells 2D. Cette étude a notamment souligné deux points à élucider pour le développement d’une méthode totalement 3D : premièrement, le calcul des flux diffusifs par un simple schéma à deux points s’est révélé insuffisamment précis dans les cut-cells 3D-extrudées du fait de la non orthogonalité. Ensuite, l’implémentation de ces flux à la paroi, qui s’effectue en imposant une discrétisation distincte pour chaque type de cut-cell extrudée, se révèle trop complexe pour être étendue avec succès aux nombreux types supplémentaires de cut-cells 3D, et doit être simplifiée et rationalisée. Dans cette thèse, le premier point est résolu en utilisant l’outil des schémas diamants, d’abord étudié en 2D pour l’équation de la chaleur puis les équations de Navier-Stokes dans l’approximation de Boussinesq, puis étendu en 3D. En outre, les schémas diamants ont permis de revisiter intégralement la discrétisation du tenseur des contraintes des équations de Navier-Stokes, où disparaît le traitement au cas par cas selon la disposition de la frontière solide dans les cut-cells. Cela a permis d’aboutir à une discrétisation systématique, précise et algorithmiquement efficace pour les écoulements en géométries totalement 3D. La validation numérique de la méthode LS-STAG avec schémas diamants est présentée pour une série de cas tests en géométries complexes 2D et 3D. Sa précision est d’abord évaluée par comparaison avec des solutions analytiques en 2D, puis en 3D par la simulation d’un écoulement de Stokes entre deux sphères concentriques. La robustesse de la méthode est notamment mise en évidence par l’étude d’écoulements autour d’une sphère en rotation, dans les régimes laminaires (stationnaire et instationnaire), ainsi que pour un régime faiblement turbulent. / The LS-STAG method is a cartesian method for the computations of incompressible flows in complex geometries, which consists in an accurate discretisation of the Navier-Stokes equations in cut-cells, polyhedral cells with complex shape made by the intersection of cartesian mesh and the immersed boundary. Originally developed for 2D geometries, where only three types of generic cut-cells appear, its extension to 3D geometries has to deal with the large amount of cut-cells types (108). Recently, the LS-STAG method had been extended to 3D complex geometries whose boundary is parallel to an axis of the cartesian coordinate system, where there are only the extruded counterparts of 2D cut-cells. This study highlighted two points to deal with in order to develop a totally 3D method: firstly, the computation of diffusive fluxes by a simple 2-points scheme has shown to be insufficiently accurate in 3D-extruded cut-cells due to the non-orthogonality. In addition to that, implementation of these fluxes on the immersed boundary, which is done with a case by case discretisation according to the type of the cut-cells, appears to be too difficult for its successful extension to the several extra types of 3D cut-cells, and needs to be simplified and rationalized. In this thesis, the first point is solved by using the diamond scheme tool, firstly studied in 2D for the heat equation then for the Navier-Stokes equations in Boussinesq approximation, and finally extended to 3D. Moreover, the diamond schemes have been used to fully revisit the discretisation of shear stresses from Navier-Stokes equations, where the case by case procedure is removed. These modifications have permitted to come up with a systematic discretisation that is accurate and algorithmically efficient for flows in totally 3D geometries. The numerical validation of the LS-STAG method with diamond schemes is presented for a series of test cases in 2D and 3D complex geometries. The precision is firstly assessed by comparison with analytical solutions in 2D, then in 3D by the simulation of Stokes flow between two concentric spheres. The robustess of the method is highlighted by the simulations of flows past a rotating sphere, in laminar modes (steady and unsteady), as well as in a weakly turbulent mode.
|
124 |
Development Of Theoretical And Computational Methods For Three-body ProcessesBlandon Zapata, Juan 01 January 2009 (has links)
This thesis discusses the development and application of theoretical and computational methods to study three-body processes. The main focus is on the calculation of three-body resonances and bound states. This broadly includes the study of Efimov states and resonances, three-body shape resonances, three-body Feshbach resonances, three-body pre-dissociated states in systems with a conical intersection, and the calculation of three-body recombination rate coefficients. The method was applied to a number of systems. A chapter of the thesis is dedicated to the related study of deriving correlation diagrams for three-body states before and after a three-body collision. More specifically, the thesis discusses the calculation of the H+H+H three-body recombination rate coefficient using the developed method. Additionally, we discuss a conceptually simple and effective diabatization procedure for the calculation of pre-dissociated vibrational states for a system with a conical intersection. We apply the method to H_3, where the quantum molecular dynamics are notoriously difficult and where non-adiabatic couplings are important, and a correct description of the geometric phase associated with the diabatic representation is crucial for an accurate representation of these couplings. With our approach, we were also able to calculate Efimov-type resonances. The calculations of bound states and resonances were performed by formulating the problem in hyperspherical coordinates, and obtaining three-body eigenstates and eigen-energies by applying the hyperspherical adiabatic separation and the slow variable discretization. We employed the complex absorbing potential to calculate resonance energies and lifetimes, and introduce an uniquely defined diabatization procedure to treat X_3 molecules with a conical intersection. The proposed approach is general enough to be applied to problems in nuclear, atomic, molecular and astrophysics.
|
125 |
Polynomial Models for Systems Biology: Data Discretization and Term Order Effect on DynamicsDimitrova, Elena Stanimirova 12 September 2006 (has links)
Systems biology aims at system-level understanding of biological systems, in particular cellular networks. The milestones of this understanding are knowledge of the structure of the system, understanding of its dynamics, effective control methods, and powerful prediction capability. The complexity of biological systems makes it inevitable to consider mathematical modeling in order to achieve these goals.
The enormous accumulation of experimental data representing the activities of the living cell has triggered an increasing interest in the reverse engineering of biological networks from data. In particular, construction of discrete models for reverse engineering of biological networks is receiving attention, with the goal of providing a coarse-grained description of such networks. In this dissertation we consider the modeling framework of polynomial dynamical systems over finite fields constructed from experimental data. We present and propose solutions to two problems inherent in this modeling method: the necessity of appropriate discretization of the data and the selection of a particular polynomial model from the set of all models that fit the data.
Data discretization, also known as binning, is a crucial issue for the construction of discrete models of biological networks. Experimental data are however usually continuous, or, at least, represented by computer floating point numbers. A major challenge in discretizing biological data, such as those collected through microarray experiments, is the typically small samples size. Many methods for discretization are not applicable due to the insufficient amount of data. The method proposed in this work is a first attempt to develop a discretization tool that takes into consideration the issues and limitations that are inherent in short data time courses. Our focus is on the two characteristics that any discretization method should possess in order to be used for dynamic modeling: preservation of dynamics and information content and inhibition of noise.
Given a set of data points, of particular importance in the construction of polynomial models for the reverse engineering of biological networks is the collection of all polynomials that vanish on this set of points, the so-called ideal of points. Polynomial ideals can be represented through a special finite generating set, known as Gröbner basis, that possesses some desirable properties. For a given ideal, however, the Gröbner basis may not be unique since its computation depends on the choice of leading terms for the multivariate polynomials in the ideal. The correspondence between data points and uniqueness of Gröbner bases is studied in this dissertation. More specifically, an algorithm is developed for finding all minimal sets of points that, added to the given set, have a corresponding ideal of points with a unique Gröbner basis. This question is of interest in itself but the main motivation for studying it was its relevance to the construction of polynomial dynamical systems.
This research has been partially supported by NIH Grant Nr. RO1GM068947-01. / Ph. D.
|
126 |
Towards Discretization by Piecewise Pseudoholomorphic Curves / Zur Diskretisierung durch stückweise pseudoholomorphe KurvenBauer, David 27 January 2014 (has links) (PDF)
This thesis comprises the study of two moduli spaces of piecewise J-holomorphic curves. The main scheme is to consider a subdivision of the 2-sphere into a collection of small domains and to study collections of J-holomorphic maps into a symplectic manifold. These maps are coupled by Lagrangian boundary conditions. The work can be seen as finding a 2-dimensional analogue of the finite-dimensional path space approximation by piecewise geodesics on a Riemannian manifold (Q,g).
For a nice class of target manifolds we consider tangent bundles of Riemannian manifolds and symplectizations of unit tangent bundles. Via polarization they provide a rich set of Lagrangians which can be used to define appropriate boundary value problems for the J-holomorphic pieces. The work focuses on existence theory as a pre-stage to global questions such as combinatorial refinement and the quality of the approximation.
The first moduli space of lifted type is defined on a triangulation of the 2-sphere and consists of disks in the tangent bundle whose boundary projects onto geodesic triangles. The second moduli space of punctured type is defined on a circle packing domain and consists of boundary punctured disks in the symplectization of the unit tangent bundle. Their boundary components map into single fibers and at punctures the disks converge to geodesics. The coupling boundary conditions are chosen such that the piecewise problem always is Fredholm of index zero and both moduli spaces only depend on discrete data.
For both spaces existence results are established for the J-holomorphic pieces which hold true on a small scale. Each proof employs a version of the implicit function theorem in a different setting. Here the argument for the moduli space of punctured type is more subtle. It rests on a connection to tropical geometry discovered by T. Ekholm for 1-jet spaces. The boundary punctured disks are constructed in the vicinity of explicit Morse flow trees which correspond to the limiting objects under degeneration of the boundary condition.
|
127 |
The Development of a Coupled Physics and Kinetics Model to Computationally Predict the Powder to Power Performance of Solid Oxide Fuel Cell Anode MicrostructuresGaweł, Duncan Albert Wojciech 03 October 2013 (has links)
A numerical model was developed to evaluate the performance of detailed solid oxide fuel cell (SOFC) anode microstructures obtained from experimental reconstruction techniques or generated from synthetic computational techniques. The model is also capable of identifying the linear triple phase boundary (TPB) reaction sites and evaluating the effective transport within the detailed structures, allowing a comparison between the structural properties and performance to be conducted. To simulate the cell performance, a novel numerical coupling technique was developed in OpenFOAM and validated. The computational grid type and mesh properties were also evaluated to establish appropriate mesh resolutions to employ when studying the performance. The performance of a baseline synthetic electrode structure was evaluated using the model and under the applied conditions it was observed that the ionic potential had the largest influence over the performance.
The model was used in conjunction with a computational synthetic electrode manufacturing algorithm to conduct a numerical powder to power parametric study investigating the effects of the manufacturing properties on the performance. An improvement in the overall performance was observed in structures which maximized the number of reaction sites and had well established transport networks in the ion phase. From the manufacturing parameters studied a performance increase was observed in structures with low porosity and ionic solid volume fractions near the percolation threshold, and when the anodes were manufactured from small monosized particles or binary mixtures comprising of smaller oxygen ion conductive particles. Insight into the anode thickness was also provided and it was observed that the current distribution within the anode was a function of the applied overpotential and an increase in the overpotential resulted in the majority of the current production to increase and shift closer to the electrode-electrolyte interface. / Thesis (Master, Mechanical and Materials Engineering) -- Queen's University, 2013-10-01 09:41:47.617
|
128 |
Échantillonnage des distributions continues non uniformes en précision arbitraire et protocole pour l'échantillonnage exact distribué des distributions discrètes quantiquesGravel, Claude 03 1900 (has links)
La thèse est divisée principalement en deux parties. La première partie regroupe les chapitres 2 et 3. La deuxième partie regroupe les chapitres 4 et 5. La première partie concerne l'échantillonnage de distributions continues non uniformes garantissant un niveau fixe de précision. Knuth et Yao démontrèrent en 1976 comment échantillonner exactement n'importe quelle distribution discrète en n'ayant recours qu'à une source de bits non biaisés indépendants et identiquement distribués. La première partie de cette thèse généralise en quelque sorte la théorie de Knuth et Yao aux distributions continues non uniformes, une fois la précision fixée. Une borne inférieure ainsi que des bornes supérieures pour des algorithmes génériques comme l'inversion et la discrétisation figurent parmi les résultats de cette première partie. De plus, une nouvelle preuve simple du résultat principal de l'article original de Knuth et Yao figure parmi les résultats de cette thèse. La deuxième partie concerne la résolution d'un problème en théorie de la complexité de la communication, un problème qui naquit avec l'avènement de l'informatique quantique. Étant donné une distribution discrète paramétrée par un vecteur réel de dimension N et un réseau de N ordinateurs ayant accès à une source de bits non biaisés indépendants et identiquement distribués où chaque ordinateur possède un et un seul des N paramètres, un protocole distribué est établi afin d'échantillonner exactement ladite distribution. / The thesis is divided mainly into two parts. Chapters 2 and 3 contain the first part. Chapters 4 and 5 contain the second part. The first part is about sampling non uniform continuous distributions with a given level of precision. Knuth and Yao showed in 1976 how to sample exactly any discrete distribution using a source of unbiased identically and independently distributed bits. The first part of this thesis extends the theory of Knuth and Yao to non uniform continuous distributions once the precision is fixed. A lower bound and upper bounds for generic algorithms based on discretization or inversion are given as well. In addition, a new simple proof of the original result of Knuth and Yao is given here. The second part is about the solution of a problem in communication complexity that originally appeared within the field of quantum information science. Given a network of N computers with a server capable of generating random unbiased bits and a parametric discrete distribution with a vector of N real parameters where each computer owns one and only one parameter, a protocol to sample exactly the distribution in a distributed manner is given here.
|
129 |
Méthodes de Galerkin stochastiques adaptatives pour la propagation d'incertitudes paramétriques dans les modèles hyperboliques / Adaptive stochastic Galerkin methods for parametric uncertainty propagation in hyperbolic systemsTryoen, Julie 21 November 2011 (has links)
On considère des méthodes de Galerkin stochastiques pour des systèmes hyperboliques faisant intervenir des données en entrée incertaines de lois de distribution connues paramétrées par des variables aléatoires. On s'intéresse à des problèmes où un choc apparaît presque sûrement en temps fini. Dans ce cas, la solution peut développer des discontinuités dans les domaines spatial et stochastique. On utilise un schéma de Volumes Finis pour la discrétisation spatiale et une projection de Galerkin basée sur une approximation polynomiale par morceaux pour la discrétisation stochastique. On propose un solveur de type Roe avec correcteur entropique pour le système de Galerkin, utilisant une technique originale pour approcher la valeur absolue de la matrice de Roe et une adaptation du correcteur entropique de Dubois et Mehlmann. La méthode proposée reste coûteuse car une discrétisation stochastique très fine est nécessaire pour représenter la solution au voisinage des discontinuités. Il est donc nécessaire de faire appel à des stratégies adaptatives. Comme les discontinuités sont localisées en espace et évoluent en temps, on propose des représentations stochastiques dépendant de l'espace et du temps. On formule cette méthodologie dans un contexte multi-résolution basé sur le concept d'arbres binaires pour décrire la discrétisation stochastique. Les étapes d'enrichissement et d'élagage adaptatifs sont réalisées en utilisant des critères d'analyse multi-résolution. Dans le cas multidimensionnel, une anisotropie de la procédure adaptative est proposée. La méthodologie est évaluée sur le système des équations d'Euler dans un tube à choc et sur l'équation de Burgers en une et deux dimensions stochastiques / This work is concerned with stochastic Galerkin methods for hyperbolic systems involving uncertain data with known distribution functions parametrized by random variables. We are interested in problems where a shock appears almost surely in finite time. In this case, the solution exhibits discontinuities in the spatial and in the stochastic domains. A Finite Volume scheme is used for the spatial discretization and a Galerkin projection based on piecewise poynomial approximation is used for the stochastic discretization. A Roe-type solver with an entropy correction is proposed for the Galerkin system, using an original technique to approximate the absolute value of the Roe matrix and an adaptation of the Dubois and Mehlman entropy corrector. Although this method deals with complex situations, it remains costly because a very fine stochastic discretization is needed to represent the solution in the vicinity of discontinuities. This fact calls for adaptive strategies. As discontinuities are localized in space and time, stochastic representations depending on space and time are proposed. This methodology is formulated in a multiresolution context based on the concept of binary trees for the stochastic discretization. The adaptive enrichment and coarsening steps are based on multiresolution analysis criteria. In the multidimensional case, an anisotropy of the adaptive procedure is proposed. The method is tested on the Euler equations in a shock tube and on the Burgers equation in one and two stochastic dimensions
|
130 |
Analyse de modèles en mécanique des fluides compressiblesFettah, Amal 18 December 2012 (has links)
Dans cette thèse on s'est intéressé à l'étude de problèmes concernant la théorie des écoulements compressibles. Dans une première partie on a traité le problème de transport instationnaire avec un champ de vitesse peu régulier, on a établi un résultat d'existence en passant à la limite sur des schémas numériques volumes finis avec un choix décentré amont qui garantie la positivité de la masse volumique. Pour le problème de Stokes, le résultat est démontré par deux approches : une approche par schéma numérique et une approche par régularité visqueuse.Dans la première méthode on propose une discrétisation qui combine la méthode des éléments finis et la méthode des volumes finis qui repose sur les espaces Crouzeix-Raviart. Une première difficulté de ce travail est de démontrer les estimations sur la solution discrète, en particulier à cause de la présence de la gravité dans le terme source de l'équation de quantité de mouvement. Le fait de considérer une loi d'état très générale conduit des difficultés supplémentaires en particulier dans le passage à la limite sur cette équation.Dans la deuxième méthode, le résultat d'existence est démontré en utilisant une approximation par viscosité. Ceci consiste essentiellement en deux parties : l'étude du problème de convection diffusion (qui apparait dans le problème régularisé) où on démontre l'existence et l'unicité de solution et en deuxième partie le passage à la limite sur le problème régularisé. / This thesis is concerned with the study of problems relating in the theory of compressible flows . We prove the existence of the considered problems in a first part by passing to the limit on the numerical schemes proposed for the discretisation of these problems. In the second part, the existence result is obtained by passing to the limit on the approximate solutions given by a corresponding regularized problem.The main result is to prove the existence of a solution of the stationnary compressible Stokes problem with a general equation of state.We first prove this result by passing to the limit on the numerical scheme as the mesh size tends to zero. The fact to consider a general E.O.S induces some additional difficulties in particular to get estimates on the discrete solution (which comes also from the presence of the gravity in the momentum equation) and in the passage to the limit on the E.O.S.We also prove the existence result by passing to the limit on a regularized problem. We first treat the convection-diffusion problem (which appears in the regularized problem), we give an existence and uniqueness result, and we then prove estimates on the approwimate solutions and pass to the limit on the regularized problem.
|
Page generated in 0.1083 seconds