• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 55
  • 44
  • 13
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 247
  • 247
  • 69
  • 50
  • 43
  • 41
  • 39
  • 37
  • 31
  • 30
  • 30
  • 29
  • 28
  • 28
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Skirstomųjų tinklų galios nuostolių skaičiavimo metodų palyginimas / Comparison of calculation methods for distribution network power losses

Zavadzkis, Lukas 14 June 2005 (has links)
Calculation methods of electric power loss in 10 kV distribution network were analyzed in this study. It was examined what influence to power loss calculations has the cable resistance dependency on temperature and cable load. Voltage losses dependency on step-down transformer load, active and reactive power coefficients cosφ and sinφ was also an object of this research. It was intended to analyze comparative power loss dependences for various cross-section 10 kV cables too. Electric power loss calculations according to average load current are made for the real distribution network.
52

10kV linijų techninių financinių rodiklių tyrimas / Research of 10 kV lines' technical - financial measures

Bertulis, Algirdas 07 September 2010 (has links)
Šiame darbe nagrinėjamas Radviliškio rajono 10 kV skirstomasis tinklas. 2009 m. duomenimis 10 kV elektros oro linijų ilgis buvo 988,62 km ir kabelinių elektros linijų 115,6 km. Visos elektros oro linijos yra statytos su gelžbetoninėmis atramomis. Linijų tankis 0,68 km/km2. Dėl elektros tiekimo nutraukimų vartotojai patiria materialinę žalą. Kadangi visos linijos buvo statytos tuomet kai Lietuva buvo TSRS sudėtyje. Lietuvai įstojus į Europos Sąjungą, pasikeitė reikalavimai skirstomajam tinklui. Apskaičiuosime kai kuriuos esamo tinklo parametrus ir pabandysime palyginti su normatyviniais. Šiame darbe pateikiame išvadas apie nagrinėjamo elektros tinklo patikimumą. Ar tinklą galima toliau eksploatuoti. Iš gautų rezultatų bus galima spręsti kokiais būdais galima pagerinti tinklo būklę. / In this final paper the 10 kV distributive networks in Radviliskis district has been analysed. According to the data of 2009, the length of 10 kV air route of electricity was 988,62 km and the length of cable route of electricity was 115,6 km. All the air route of electricity has been built using ferroconcrete supports. The density of routes is 0,68 km/ km2. The consumers of electricity experience material harm due to abortion of distribution of electricity. The requirements for distributive networks have been changed when Lithuania joined EU, because all the electricity routes have been built when Lithuania was part of the Soviet Union. We will try to evaluate some parameters of present network and to compare with normative. In this paper the conclusions about the reliability and further maintenance of electricity network has been formulated. Agreeably with results received, solutions for current network improvement have been given.
53

Facility location decisions with environmental considerations. A case study from the petrochemical industry

Treitl, Stefan, Jammernegg, Werner 24 April 2014 (has links) (PDF)
The recently growing concerns of customers and governments about environmental protection and greenhouse gas reduction have forced companies to integrate the topic of environmental sustainability into their decision making. Facility location decisions are of special relevance in this respect because of their strategic nature. Furthermore, many different trade-offs must be considered, for example between operational costs and customer service. But as soon as environmental issues are concerned, other critical issues must be considered as well. Based on a case study from the petrochemical industry, this paper extends two basic facility location models and shows the impact of distribution network-design decisions on the economic and environmental performance of the company. The results show a trade-off between total (distribution) costs and transport carbon emissions. (authors' abstract)
54

Design Of Water Distribution System By Optimization Using Reliability Considerations

Akdogan, Tevfik 01 June 2005 (has links) (PDF)
ABSTRACT DESIGN OF WATER DISTRIBUTION SYSTEM BY OPTIMIZATION USING RELIABILITY CONSIDERATIONS Akdogan, Tevfik Department of Civil Engineering Supervisor : Assoc. Prof. Dr. Nuri Merzi April 2005, 91 pages In spite of a wide research, design of water distribution networks are not realized using optimization techniques. One reason for this fact is, design of water distribution networks is evaluated, mostly, as a least-cost optimization problem where pipe diameters being the only decision variables. The other motivation for preferring the traditional modeling practice is that, existing optimization algorithms are not presented to the user as friendly as it should be. In fact, water distribution systems are very complex systems such that it is not easy to obtain least-cost design systems considering other constraints such as reliability, in addition to classical constraints related to hydraulic feasibility, satisfaction of nodal demands and requirement of nodal pressures. This study presents a user-friendly package concerning the design of water distribution networks by optimization using reliability considerations / this works employs the algorithm proposed by Goulter and Coals (1986). At the end, a skeletonized network design is offered / various costs are estimated in regard to the degree of reliability.
55

Models for investigation of flexibility benefits in unbalanced low voltage smart grids / Modèles pour l'étude des apports de la flexibilité dans les réseaux smart grids basse tension déséquilibrés

Benoit, Clémentine 19 June 2015 (has links)
Cette thèse porte sur l'étude des apports de la flexibilité dans les réseaux Smart Grids Basse Tension. Ces derniers étant fondamentalement différents des réseaux Moyennes et Hautes Tensions, la gestion des flexibilités BT ne peut être calquée sur celle des réseaux MT et HT. De nouveaux moyens de contrôle doivent donc être développés. L'apport de ces flexibilité est analysé selon deux principaux bénéfices: la gestion opérationnelle la réduction de la pointe. Le premier apport porte donc sur le maintien des variables critiques à l'interieur des contraintes admissibles. Le but est de pouvoir gérer le réseau au plus près de ses limites, et donc d'éviter d'avoir à le renouveler, nottament en cas d'insertion importante de production décentralisée ou de véhicules électriques. La flexibilité utilisée est la gestion coordonnée des production décentralisées (puissances actives, réactives et phase de connection) et d'un régleur en charge. Le second porte sur la réduction de la pointe de consommation, soit au niveau du transformateur, soit au niveau national. La flexibilité utilisée est le délestage du chauffage électrique pendant une courte durée, suivie d'un rebond de puissance lorsque le chauffage est rallumé. / This thesis investigates the potential contributions of flexibilities in Low Voltage Smart Grids. These networks are intrinsically different than Medium and High Voltages networks, so that the control of LV flexibilities cannot be directly taken from MV and HV networks, and new methods should be developed. The contribution of these flexibilities is studied through two main benefits: improved network operation and peak shaving. The first benefit focuses on maintaining the critical variables within the admissible constraints. The objective is to manage the network closer to its limits, reducing the need for margins, and therefore the need for upscaling. This is especially true in case of significant insertion of distributed generations or electric vehicles. The studied flexibility is the coordinated management of decentralized generation (active and reactive powers, phase switch) and a tap changer. The second benefit concerns the reduction of the peak consumption, either at the transformer, either at the national level. The studied flexibility is the shedding of electric heating for a short time, followed by a rebound when the heating is turned back on.
56

Profiling and disaggregation of electricity demands measured in MV distribution networks

Paisios, Andreas January 2017 (has links)
Despite the extensive deployment of smart-meters (SMs) at the low-voltage (LV) level, which are either fully operational or will be in the near future, distribution network operators (DNOs) are still relying on a limited number of permanently installed monitoring devices at primary and secondary medium-voltage (MV) substations, for purposes of network operation and control, as well as to inform and facilitate trading interactions between generators, distributors and suppliers. Accordingly, improved and sufficiently developed models for the analysis of aggregate demands at the MV-level are required for the correct assessment of load variability, composition and time-dependent evolution, necessary for: addressing issues of robustness, security and reliability; accomplishing higher penetration levels from renewable/distributed generation; implementing demand-side-management (DSM) schemes and incorporating new technologies; decreasing environmental and economic costs and aiding towards the realisation of automated and proactive ''smart-grid'' networks. The analysis of MV-demand measurements provides an independent source of information that can capture network characteristics that do not manifest in the data collected at the LV-level, or when such data is restricted or altogether unavailable. This information describes the supply/demand interactions at the mid-level between high-voltage (HV) transmission and LV end-user consumption and opens possibilities for validation of existing bottom-up aggregation approaches, while addressing issues of reliance on survey-based data for technical and economic power system studies. This thesis presents improved and novel methodologies for the analysis of aggregate demands, measured at MV-substations, aimed at more accurate and detailed load profiling, temporal decomposition and identification of the drivers of demand variability, classification of grid-supply- points (GSPs) according to consumption patterns, disaggregation with respect to customer-classes and load-types and load forecasting. The developed models are based on a number of traditional and modern analytical and statistical techniques, including: data mining, correlational and regression analysis, Fourier analysis, clustering and pattern recognition, etc. The approaches are demonstrated on demand datasets from UK and European based DNOs, thus providing specific information for the demand characteristics, the dependencies to external parameters and to socio-behavioural factors and the most likely load composition at the corresponding geographical locations, while the approaches are also intendent to be easily adaptable for studies at equivalent voltage and demand aggregation levels.
57

Voltage-led load management in UK distribution networks

Ballanti, Andrea January 2018 (has links)
The growing uptake of wind and photovoltaic technologies requires further sources of system-level flexibility to avoid or defer significant investments. The ability to control, to some extent, customer demand (load management, LM) is one of these sources of flexibility. However, the direct involvement of a large number of customers makes the scalability of such approach a major challenge. A mostly unexplored solution to overcome the challenges of managing thousands or millions of customers is to leverage the positive correlation between voltage and demand. More precisely, Distribution Network Operators (DNOs) can control existing regulation devices to reduce customer voltages and so triggering a reduction in demand. This scheme, hereafter called voltage-led LM, avoids the direct involvement of customers overcoming one of the major barriers of traditional LM solutions. To understand whether this approach can be of any significance, a methodology able to quantify such reduction in demand need to be developed. However, the few methodologies available in the literature neglect the interactions across voltage levels and their influence on the benefits of the scheme. Moreover, time-varying demand profiles and load models are not always considered. Finally, the impact that the widespread adoption of distributed energy resources might have, is also neglected. This thesis addressed these gaps by developing a four-stage approach in which the time-varying volume of demand reduction that the scheme can unlock is quantified considering for the first time the influences among all voltage levels in distribution network. To reduce the complexity each voltage level is analysed separately whilst maintaining the corresponding dependencies. The methodology, also able to extrapolate the results at national scale, can quantify the impact that the uptake of residential scale PV units might have on the scheme. The methodology is demonstrated with a real UK case study where 10-min resolution time-series daily and seasonal analysis are performed. For the first time real network models across the whole distribution network, from 132 kV to 400 V, have been adopted. The interactions across voltage levels, the adoption of realistic load models, the variety of network models and the use of a time-varying approach, all aspects simultaneously considered for the first time in a case study, have shown to play a key role in the quantification. In Great Britain the scheme is expected to provide a significant volume of flexibility of around 1.8GW (60 GW of peak demand). The presence of PV, at least in the short term, has shown to have only a marginally effect on the benefits unlocked by the voltage-led LM scheme, making such scheme promising even in a low carbon future.
58

Reliability and risk analysis of post fault capacity services in smart distribution networks

Syrri, Angeliki Lydia Antonia January 2017 (has links)
Recent technological developments are bringing about substantial changes that are converting traditional distribution networks into "smart" distribution networks. In particular, it is possible to observe seamless integration of Information and Communication Technologies (ICTs), including the widespread installation of automatic equipment, smart meters, etc. The increased automation facilitates active network management, interaction between market actors and demand side participation. If we also consider the increasing penetration of distributed generation, renewables and various emerging technologies such as storage and dynamic rating, it can be argued that the capacity of distribution networks should not only depend on conventional asset. In this context, taking into account uncertain load growth and ageing infrastructure, which trigger network investments, the above-mentioned advancements could alter and be used to improve the network design philosophy adopted so far. Hitherto, in fact, networks have been planned according to deterministic and conservative standards, being typically underutilised, in order for capacity to be available during emergencies. This practice could be replaced by a corrective philosophy, where existing infrastructure could be fully unlocked for normal conditions and distributed energy resources could be used for post fault capacity services. Nonetheless, to thoroughly evaluate the contribution of the resources and also to properly model emergency conditions, a probabilistic analysis should be carried out, which captures the stochasticity of some technologies, the randomness of faults and, thus, the risk profile of smart distribution networks. The research work in this thesis proposes a variety of post fault capacity services to increase distribution network utilisation but also to provide reliability support during emergency conditions. In particular, a demand response (DR) scheme is proposed where DR customers are optimally disconnected during contingencies from the operator depending on their cost of interruption. Additionally, time-limited thermal ratings have been used to increase network utilisation and support higher loading levels. Besides that, a collaborative operation of wind farms and electrical energy storage is proposed and evaluated, and their capacity contribution is calculated through the effective load carrying capability. Furthermore, the microgrid concept is examined, where multi-generation technologies collaborate to provide capacity services to internal customers but also to the remaining network. Finally, a distributed software infrastructure is examined which could be effectively used to support services in smart grids. The underlying framework for the reliability analysis is based on Sequential Monte Carlo Simulations, capturing inter-temporal constraints of the resources (payback effects, dynamic rating, DR profile, storage remaining available capacity) and the stochasticity of electrical and ICT equipment. The comprehensive distribution network reliability analysis includes network reconfiguration, restoration process, and ac power flow calculations, supporting a full risk analysis and building the risk profile for the arising smart distribution networks. Real case studies from ongoing project in England North West demonstrate the concepts and tools developed and provide noteworthy conclusions to network planners, including to inform design of DR contracts.
59

A Fast and Efficient Method for Power Distribution Network Reconfiguration

Ekstrand, Aaron Jordan 01 May 2017 (has links)
We have proposed a method by which the topology of a network might be discovered through an algorithm like the distributed Bellman-Ford algorithm. We have explored the inner workings of two methods to automate power distribution network reconfiguration, the ILP Solver and the Heuristic Solver. We have seen how networks of different shapes can be translated into a flattened topology, which is necessary preprocessing to find a power assignment solution for a network. We have also seen some experimental results comparing the performance of the ILP Solver and the Heuristic Solver. The Heuristic Solver is a very fast, efficient algorithm to reconfigure power distribution, which is important in the case of an emergency. It performs consistently with near perfect results at a speed that is orders of magnitude quicker than the ILP Solver in almost all cases. In an application where a network is small and time is not an important constraint, the ILP Solver could possibly be preferable, but in any context where time is sensitive and near-perfect results are as acceptable as perfect results, the Heuristic Solver is much preferable. There is always room for improvement. Future tests should perhaps allow for non-integer capacity units, or loads that require other values than unit capacity. Optimizing each algorithm by rewriting them in C could give more optimized tests, though this may not be necessary to make judgments about implementing one or the other. There may be some ways to improve the Heuristic Solver, such as arranging the ordered_links in some way that could be more optimal. The algorithm could also be improved by taking advantage of the fact that once there are no more sources with capacity to provide any loads, the process of trying to assign loads to them for power supply can cease. Perhaps this method could be combined with other methods that do not presently account for load priorities or place as much value on fast execution.
60

Stochastic Optimization for Feasibility Determination: An Application to Water Pump Operation in Water Distribution Network

January 2018 (has links)
abstract: The energy consumption by public drinking water and wastewater utilities represent up to 30%-40% of a municipality energy bill. The largest energy consumption is used to operate motors for pumping. As a result, the engineering and control community develop the Variable Speed Pumps (VSPs) which allow for regulating valves in the network instead of the traditional binary ON/OFF pumps. Potentially, VSPs save up to 90% of annual energy cost compared to the binary pump. The control problem has been tackled in the literature as “Pump Scheduling Optimization” (PSO) with a main focus on the cost minimization. Nonetheless, engineering literature is mostly concerned with the problem of understanding “healthy working conditions” (e.g., leakages, breakages) for a water infrastructure rather than the costs. This is very critical because if we operate a network under stress, it may satisfy the demand at present but will likely hinder network functionality in the future. This research addresses the problem of analyzing working conditions of large water systems by means of a detailed hydraulic simulation model (e.g., EPANet) to gain insights into feasibility with respect to pressure, tank level, etc. This work presents a new framework called Feasible Set Approximation – Probabilistic Branch and Bound (FSA-PBnB) for the definition and determination of feasible solutions in terms of pumps regulation. We propose the concept of feasibility distance, which is measured as the distance of the current solution from the feasibility frontier to estimate the distribution of the feasibility values across the solution space. Based on this estimate, pruning the infeasible regions and maintaining the feasible regions are proposed to identify the desired feasible solutions. We test the proposed algorithm with both theoretical and real water networks. The results demonstrate that FSA-PBnB has the capability to identify the feasibility profile in an efficient way. Additionally, with the feasibility distance, we can understand the quality of sub-region in terms of feasibility. The present work provides a basic feasibility determination framework on the low dimension problems. When FSA-PBnB extends to large scale constraint optimization problems, a more intelligent sampling method may be developed to further reduce the computational effort. / Dissertation/Thesis / Masters Thesis Industrial Engineering 2018

Page generated in 0.1179 seconds