Spelling suggestions: "subject:"donor:acceptor"" "subject:"donoracceptor""
61 |
Solvent effects upon the charge-transfer reaction of the ADMA molecule in the excited stateKhajehpour, Mazdak, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references. Also available on the Internet.
|
62 |
Tailoring benzodithiophene core molecules for organic electronic applicationsRichard, Coralie Adèle 08 June 2015 (has links)
In this dissertation, the multiple facets of benzodithiophene (BDT) units are explored, with a focus on understanding how the isomerism of the BDT structure affects the macroscopic properties of the oligomeric and polymeric materials created. First, the story focuses on an overview of the BDT synthons and their applications in organic electronics. A straightforward synthesis of BDT and its derivatization to seven π-conjugated building blocks and seven polymers is presented. Then, symmetric (donor)2-acceptor (D2-A) dye architecture for application in dye-sensitized solar cells are investigated. Two isomeric systems are studied, and the branched sensitizers show a greater incident photon-to-current efficiency than the linear dyes. The nature of the accepting core is also varied between dibenzophenazine to dithienophenazine. The sensitizer with the weakest accepting core displays the best photovoltaic performance, due to an increase in the open-circuit voltage of ~100 mV caused by the favorable shift of the metal oxide conduction band. Lastly, a study of the donating building blocks in these (D2-A) sensitizers demonstrates that increasing the number of donor units from two to six thiophene moiety doubles the solar cell performance, due to the improvement of the light harvesting ability.
|
63 |
Theoretical studies of the structure-property relationships of hole- and electron-transport materials for organic photovoltaic applicationsPandey, Laxman 18 September 2013 (has links)
Donor-acceptor and thiophene based π-conjugated molecules and polymers, along with fullerene derivatives, are extensively used active components in the photoactive layer of organic photovoltaic devices. In this dissertation, we make use of several computational methodologies to investigate structure-property relationships of these organic systems in their molecular forms. We begin with an overview of the field of organic photovoltaics and some of the important problems in organic solar cells that are currently being investigated. This is then followed by a brief review of the electronic-structure methods (e.g. Hartree-Fock theory, Density Functional Theory, and Time-dependent Density Functional Theory) that are employed.
We then present the main results of the dissertation. Chapter 3 provides a broad overview on how changes to the donor-acceptor copolymer chemical structure impacts its intrinsic geometric, electronic, and optical properties. Chapter 4 focuses on the characterization of the lowest excited-states and optical absorption spectra in donor-acceptor copolymers. In Chapter 5, we investigate the effects of alkyl side-chain placements in the π-conjugated backbone of oligothiophenes and how that impacts their intramolecular properties as well as the oligomer:fullerene interfacial interactions. Chapter 6 presents our investigation on the role of oligomer:fullerene configuration and reorganization energy on exciton-dissociation and charge-recombination processes. Finally, a synopsis of the work and further considerations are presented in Chapter 7.
|
64 |
The synthesis of advanced "special pair" models for the photosynthetic reaction centre /Mecker, Christoph J. January 2000 (has links)
Thesis (Ph. D.)--University of New South Wales, 2000. / Includes bibliographic references. Also available online.
|
65 |
Radiation curing and grafting of charge transfer complexesZilic, Elvis. January 2008 (has links)
Thesis (Ph.D.)--University of Western Sydney, 2008. / Thesis submitted to the University of Western Sydney, College of Health and Science, School of Natural Sciences, in fulfilment of the requirements for admission to the Doctor of Philosophy. Includes bibliography.
|
66 |
Ab initio study of the rotation around the carbon-carbon double bond in push-pull systemsRattananakin, Pornpun, January 2006 (has links)
Thesis (Ph.D.) -- Mississippi State University. Department of Chemistry. / Title from title screen. Includes bibliographical references.
|
67 |
On the nature of the electronics structure of metal-metal quadruply bonded complexesD'Acchioli, Jason S., January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Document formatted into pages; contains xii, 286 p.; also includes graphics (some col.). Includes bibliographical references (p. 273-286). Available online via OhioLINK's ETD Center
|
68 |
Guanidine donors in nonlinear optical chromophores /Buker, Nicholas D. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (leaves 62-66).
|
69 |
Synthèse et caractérisations de nouveaux penta(organo)[60]fullerènes pour la formation d’assemblages supramoléculaires / Synthesis and characterisations of new penta(organo)[60]fullerenes for supramolecular assembliesBusseau, Antoine 11 December 2017 (has links)
La structure unique et les propriétés des fullerènes ont suscité l’intérêt des chercheurs, en particulier dans les domaines de l’électronique et de l’optoélectronique. Dans ce contexte, plusieurs mono- et de poly-adduits du fullerène ont été décrits pour leurs développements comme nouveaux matériaux originaux et comme polymères supramoléculaires. Nous présentons ici les synthèses et les études de nouveaux polymères supramoléculaires donneur-accepteur à base de penta(organo)[60]fullerènes. La parfaite régiosélectivité de la réaction de pentafonctionnalisation sur le [60]fullerène permet de former une cavité conique formée de cinq fragments éthynylaryles. A cette structure, différentes unités électro et/ou photoactives (tétrathiafulvalène et porphyrine de zinc) ont été liés par des liaisons covalentes via cinq réactions de cycloaddition 1,3- dipolaire. Le composé hôte-invité avec ses propriétés donneur-accepteur permet la formation d’assemblages par des interactions supramoléculaires. Nous avons réalisé les synthèses des penta(organo)[60]fullerènes comme nouveaux matériaux donneur-accepteur et nous avons étudié les propriétés des assemblages supramoléculaires en solution et à l’état solide. / The unique structure and properties of fullerenes have attracted wide interest especially in electronic and optoelectronic fields. In this context, a variety of mono-and poly-fullerene adducts have been described for theirs interest in the development of new complex materials and supramolecular polymers. Here, we present the synthesis and studies of new donor-acceptor supramolecular polymers based on penta(organo)[60]fullerenes. The perfect regioselectivity of the [60]fullerene pentafunctionalization reaction has provided us a singular conical structure formed by five ethynylaryl fragments. To this structure different electro and/or photoactive fragments (tetrathiafulvalene or zinc-porphyrin) were covalently linked using five simultaneous 1,3-dipolar cycloaddition reactions. The formed host-cavity together with the donor-acceptor properties of these system allow their assembly by supramolecular interactions. We have realized the synthesis of these penta(organo)[60]fullerenes as new donor-acceptor materials and the studies of their remarkable supramolecular arrangement in solution and solid state.
|
70 |
A synthetic, spectroscopic and structural examination of phosphorus, arsenic and antimony peri-substituted acenaphthenesChalmers, Brian Alexander January 2015 (has links)
Donor–acceptor complexes have been known for over a century and enjoy a long list of applications in chemistry. In this thesis, the dative interaction between phosphorus and its two heavier congeners, arsenic and antimony, are explored. Utilising peri-substitution atoms can be forced in close proximity to one another, resulting in a repulsive (nonbonding) interaction or an attractive (bonding) interaction. Hence, peri-substitution can be used to support traditionally ephemeral species. A range of phosphorus, arsenic and antimony containing peri-substituted compounds were synthesised and characterised using multi-nuclear NMR, mass spectrometry, elemental microanalysis and single crystal X-ray diffraction. The reduction of a peri-substituted dichloroarsine, led to the formation of a primary arsine, which underwent spontaneous elimination of hydrogen gas forming the first structurally characterised cyclic arsanylidene–σ⁴–phosphorane, the formation of which is essentially thermoneutral. With no sterically demanding groups shielding the arsenic atom, the reactivity and spectroscopic characteristics of this compound were explored through reactions with selected metal complexes. Reaction of the arsanylidene–phosphorane with a limited amount of oxygen reveals arsinidene–like reactivity via the formation of cycloarsines, supporting the formulation that the bonding can be described as a Lewis base–stabilised arsinidene R₃P→AsR. A series of phosphine–stibine and phosphine–stiborane peri-substituted acenaphthenes containing all permutations of pentavalent groups –SbCl[sub]nPh[sub](4-n) as well as trivalent groups –SbCl₂, –Sb(R)Cl, and –SbPh₂ (R = Ph, Mes), were synthesised and characterised by multi-nuclear NMR, MS, microanalysis and X-ray crystallography. The bonding in these species was studied by DFT computational methods. The P–Sb dative interactions range from strongly bonding to nonbonding as the Lewis acidity of the Sb acceptor is decreased. Unexpectedly, the phosphine–stiborane complexes represent the first examples of σ⁴P→σ⁶Sb structural motif. A study of unsymmetrical bis(phosphino)acenaphthenes showed the presence of a 3c–4e interaction, supported by the short P∙∙∙P distances and the large J[sub](PP) through-space couplings. Severely strained bis(sulfides) of the unsymmetrical phosphines experience pronounced displacements of the exocyclic peri-atoms. The resulting nonbonded intramolecular P∙∙∙P distances (ca. 4.05 Å) are among the largest ever reported peri-separations, independent of the heteroatoms involved. In addition, three metal complexes with square planar, tetrahedral and octahedral geometry are reported. In all three cases, the acenaphthene backbone is distorted to a greater extent than in the free bis(phosphine) but notably less than in the bis(sulfides).
|
Page generated in 0.0488 seconds