• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 281
  • 133
  • 66
  • 43
  • 38
  • 20
  • 5
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 781
  • 172
  • 103
  • 97
  • 92
  • 85
  • 76
  • 76
  • 66
  • 62
  • 60
  • 59
  • 57
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Étude du noircissement dans les fibres optiques dopées Ytterbium : interaction entre photo- et radio-noircissement / Study of the darkening in ytterbium doped fibers : interplay between photo- and radio-darkening

Duchez, Jean-Bernard 12 June 2015 (has links)
Cette thèse traite des dégradations induites par la pompe (photo-noircissement) et les radiations ionisantes externes (radio-noircissement) dans les fibres optiques en silice dopées ytterbium (FDY) utilisées en environnement sévère. Au travers de caractérisations expérimentales et de modélisations inédites, elle analyse leur interaction et en tire les conséquences quant à la tenue des FDY aux radiations sous pompe. La première partie porte sur l’identification des défauts induits (centres colorés) et leurs mécanismes de formation/guérison. Elle s’appuie sur un ensemble de caractérisations post-irradiation (RPE, ARI, TL) réalisées sur des échantillons de préformes et sur leur corrélation originale (guérison thermique, couplage TL et ARI). L’étude systématique en fonction de la composition met en évidence l’influence des co-dopants (Al, Ce) sur la capture des charges libérées lors des processus d’ionisation. La seconde partie analyse le noircissement se développant sous l’effet simultané de la pompe et de l’irradiation ionisante. A partir d’un banc de mesures autorisant le suivi de la dégradation en temps réel, on montre que photo- et radio-noircissements résultent des mêmes centres colorés blanchis par la pompe. Ce résultat, ajouté aux mécanismes préalablement identifiés, permet de proposer un modèle physique local de la dégradation photo-radio-induite. La confrontation des simulations issues de ce modèle à une large variété d’observations originales faites « en ligne » conduit à sa validation. Il est ainsi démontré que, pour des débits de dose inférieurs à une valeur critique, la dégradation des FDY pompées et irradiées ne peut excéder leur niveau de photo-noircissement. / This thesis deals with the degradation induced by the pump (photodarkening, PN) and ionizing radiations (radiodarkening, RN) in ytterbium-doped optical fiber (YDF) used in harsh environments. Through original experimental characterizations and modeling, it analyses the interplay between PN and RN and reveals important and novel properties of the radiation resistance of pumped YDF. The first part investigates induced defects (color centers) together with their creation/recovery mechanisms. It used a set of post-irradiation characterizations (ESR, RIA, TSL) conducted on preform samples and benefited from their original correlation (thermal recovery protocols coupling TSL and RIA). A systematic study as a function of composition reveals the influence of co-dopants (Al, Ce) on the trapping of carrier freed during ionization processes. The second part examines the darkening build-up under the simultaneous action of the pump and an ionizing irradiation. By using a measurement bench that allowed us to follow the real-time “on line” degradation of fiber samples, we showed that photo- and radio-darkening both arise from the same color centers that can be bleached by the pump. On the basis of this finding and of the preceding identified mechanisms, we propose a local physical model of the photo-radio-induced darkening. The latter is thoroughly validated by further successful comparisons of simulated degradation with a wide variety of “on line” original observations. Then, we notably demonstrate that for dose rates lying below a critical value (explicited by our theory), the degradation of pumped and irradiated YDF never exceeds the photo-darkening level.
312

An optical investigation of implantation damage as GaAs superlattices

Haile, Kibreab Mebrahtom 26 April 2005 (has links)
In this work tunability, implantation damage and recovery of GaAs doping superlattices implanted with hydrogen ions were studied. The applicability of two models of the optical properties of semiconductors was also investigated. GaAs doping superlattices were implanted with 0.5 MeV hydrogen ions at doses of 1012 cm-2, 1014 cm-2 and 1016 cm-2. This gradually modifies their optical characteristics from superlattice behaviour to something resembling the bulk material and beyond. Such a processing technique therefore provides a convenient way of tuning the optical properties of a superlattice semi-permanently. A combined result of ellipsometry and near infrared reflectance measurements showed that a single effective oscillator as well as a more advanced three-parameter model could be applied to the virgin and ion-implanted doping superlattices. This allowed us to determine the dose dependent effective band gap as well as other model parameters. Photoluminescence as well as normal and resonance Raman techniques were applied to study hydrogen ion implantation damage and its recovery. These techniques showed that implantation damage could be reversed to a large extent by a simple thermal annealing step. / Dissertation (MSc)--University of Pretoria, 2006. / Physics / unrestricted
313

Raman and photoluminescence spectroscopy from magnesium doped, as grown, hydrogen implanted and annealed GaN

Maremane, Martin Koena 26 April 2005 (has links)
The presence of the hydrogen complex in Mg-doped GaN poses serious threats for the technological development of blue and ultraviolet light- emitting diodes and lasers. Since hydrogen is a difficult element to work with and it is incorporated into GaN through various mechanisms, a thorough understanding of hydrogen in GaN and other nitrides is essential to meet potential challenges by hydrogen. Most of the work done on the interaction of hydrogen implanted Mg-doped GaN deals mainly with passivation of the dopants and formation of the hydrogen complex with magnesium. However, the role of hydrogen implantation on the optical properties of Mg-doped GaN is not well understood. This study is mainly about optical properties of Mg-doped GaN and the effects of hydrogen on the Mg-doped GaN. Theoretically, group theory is used to determine the total number of symmetry allowed modes in GaN, Raman active modes and possible overtones. Experimentally, Raman and photoluminescence spectroscopy verify the theoretical results. / Dissertation (MSc)--University of Pretoria, 2006. / Physics / unrestricted
314

Synthèse de nanotubes de carbonne dopés à l'azote et leur application catalytique / Synthesis of nitrogen doped carbon nanotubes and their application in catalysis

Benyounes, Anas 24 March 2016 (has links)
L'objectif de ce travail est la synthèse et l'étude des propriétés acido-basiques de nanotubes de carbone (CNT) dopés à l’azote pour les utiliser comme catalyseurs ou supports de catalyseurs. Pour ce faire, trois types de nanotubes de carbone dopés à l'azote ont été synthétisés, caractérisés et testés dans la conversion de l'alcool isopropylique. Les nanotubes de carbone dopés diffèrent par le taux d’azote et la présence ou non d'une section non dopée dans leur structure. Pour les matériaux à faible teneur en azote, la réaction conduit à la formation d'acétone indiquant la présence de sites basiques. À plus forte teneur en azote, les catalyseurs dopés conduisent à la formation d'acétone et de propène, mettant en évidence la présence de sites basiques et acides. La caractérisation par XPS nous a permis de proposer que les sites basiques sont constitués de groupes de surface pyridiniques et les sites acides sont des groupements sulfoniques formés au cours de la purification de ces matériaux avec de l'acide sulfurique. Des catalyseurs au ruthénium et au palladium supportés (2%) sur des nanotubes de carbone non dopés et dopés à l'azote (N-CNT), ont été préparés et évalués dans la réaction de décomposition de l'alcool isopropylique comme réaction test. La présence de fonctionnalités azotées (azote pyridinique, pyrrolique et quaternaire) sur le support dopé à l'azote induit une plus grande dispersion du métal. En ce qui concerne les catalyseurs supportés, ceux de palladium étaient plus actifs et plus sélectifs que ceux au ruthénium. De plus, les catalyseurs au Pd sont sélectifs en acétone, tandis que les catalyseurs au Ru conduisent à la déshydratation et la déshydrogénation. Le dopage des nanotubes de carbone par l’azote conduit aussi à l'apparition de propriétés d'oxydo-réduction. Enfin, nous avons montré que des nanotubes de carbone, constitués de deux sections différentes : une partie non dopée hydrophobe reliée à un segment hydrophile, sont amphiphiles. Nous les avons utilisés comme supports tensioactif de catalyseur au palladium. Ces nouveaux catalyseurs à base de Pd supporté ont été testés dans la réaction d'oxydation de plusieurs alcools en utilisant l'oxygène moléculaire en phase liquide. L'oxydation du 2- heptanol produit sélectivement la cétone correspondante, alors que l'oxydation de l'alcool benzylique est très sélective vis-à-vis de l'aldéhyde. Par ailleurs, l'oxydation de l'éthanol produit de l'acide acétique de manière sélective. / The objective of this work is the synthesis and the investigation of the acid and basicproperties of nitrogen doped carbon nanotubes (CNTs) able to be used as catalysts or catalystsupports. For this, three types of purified nitrogen doped CNTs were synthesized,characterized and tested for isopropyl alcohol conversion under nitrogen or air atmosphere,and compared to undoped CNTs. The N-doped CNTs differ from their nitrogen content andfrom the presence or not of undoped section in their structure. The reaction lead to theformation of acetone as the sole product on catalysts presenting no nitrogen or low nitrogencontent (< 2.8% w/w), pointing to the presence of basic sites. At higher nitrogen content, Ndopedcatalysts lead to the formation of acetone and propene, highlighting the presence ofboth basic and acids sites on such material. XPS characterization allow us to propose that thebasic sites consist in pyridinic surface groups and the acidic sites in sulfonic surface groupsformed during the purification of these material with sulfuric acid. Ruthenium and palladiumsupported catalysts (2% w/w) were prepared on nitrogen-doped and non-doped carbonnanotubes (N-CNT), and evaluated for the reaction of decomposition of isopropyl alcohol asprobe reaction. The presence of nitrogen functionalities (pyridinic, pyrrolic and quaternarynitrogen) on the nitrogen doped support induces a higher metal dispersion: 1.8 nm (Pd/NCNT)< 4.9 nm (Pd/CNT), and 2.4 nm (Ru/N-CNT) < 3.0 nm (Ru/CNT). As far as thesupported catalysts are concerned, the palladium ones were more active and more selectivethan the ruthenium ones. The Pd catalysts were selective towards acetone, whereas Rucatalysts lead to dehydration and dehydrogenation products. The nitrogen doping induces theappearance of redox properties, which appear when oxygen is present in the reaction mixture.Finally, we have shown that unique amphiphilic magnetic hybrid carbon nanotubes thatcontain on the same nanotube two different sections: a hydrophobic undoped part connectedto a hydrophilic N-doped segment are synthesized and used as tensioactive supports forpalladium catalysts. These new Pd-supported catalysts have been used in the alcoholoxidation reaction using molecular oxygen in the liquid phase. The oxidation of 2-heptanolproduces selectively the ketone, the oxidation of benzyl alcohol is very selective towards thealdehyde, and ethanol oxidation produces selectively acetic acid.
315

5 kW Near-Diffraction-Limited and 8 kW High-Brightness Monolithic Continuous Wave Fiber Lasers Directly Pumped by Laser Diodes

Fang, Qiang, Li, Jinhui, Shi, Wei, Qin, Yuguo, Xu, Yang, Meng, Xiangjie, Norwood, Robert A., Peyghambarian, Nasser 10 1900 (has links)
Tandem pumping technique are traditionally adopted to develop > 3-kW continuous-wave (cw) Yb3+-doped fiber lasers, which are usually pumped by other fiber lasers at shorter wavelengths (1018 nm e.g.). Fiber lasers directly pumped by laser diodes have higher wall-plug efficiency and are more compact. Here we report two high brightness monolithic cw fiber laser sources at 1080 nm. Both lasers consist of a cw fiber laser oscillator and one laser-diode pumped double cladding fiber amplifier in the master oscillator-power amplifier configuration. One laser, using 30-mu m-core Yb3+-doped fiber as the gain medium, can produce > 5-kW average laser power with near diffraction-limited beam quality (M-2<1.8). The slope efficiency of the fiber amplifier with respect to the launched pump power reached 86.5%. The other laser utilized 50-mu m-core Yb3+-doped fiber as the gain medium and produced > 8-kW average laser power with high beam quality (M-2: similar to 4). The slope efficiency of the fiber amplifier with respect to the launched pump power reach 83%. To the best of our knowledge, this is the first detailed report for > 5-kW near-diffraction-limited and > 8-kW high-brightness monolithic fiber lasers directly pumped by laser diodes.
316

A Spatially Resolved Spectroscopic Investigation Into The Ferromagnetic Metallic State In Hole Doped Manganites

Mitra, Joy 07 1900 (has links) (PDF)
No description available.
317

Reverse Water Gas Shift Reaction over Supported Cu-Ni Nanoparticle Catalysts

Lortie, Maxime January 2014 (has links)
CuNi nanoparticles were synthesized using a new polyol synthesis method. Three different CuxNi1-x catalysts were synthesized where x = 20, 50 and 80. The nanoparticles were deposited on carbon, C, gamma-alumina, γ-Al2O3, yttria-stabilized zirconia, YSZ, and samariumdoped ceria, SDC. Each set of catalysts was tested using the Reverse Water Gas Shift, RWGS, reaction under atmospheric pressure and at temperatures ranging from 400°C-700°C. The experiments were repeated 3 times to ensure stability and reproducibility. Platinum nanoparticles were also deposited on the same supports and tested for the RWGS reaction at the same conditions. The CuNi nanoparticles were characterized using a variety of different techniques. Xray diffraction, XRD, measurements demonstrate the resence of two CuNi solid solutions: one Cu rich solid solution, and the other a Ni rich solid solution. X-ray photo electron spectroscopy, XPS, measurements show Cu enrichment on all catalytic surfaces. Scanning electron microscopy, SEM, measurements show CuNi nanoparticles ranging in size from 4 nm to 100 nm. Some agglomeration was observed. SDC showed the best yield with all catalysts. Furthermore, high oxygen vacancy content was shown to increase yield of CO for the RWGS reaction. Cu50Ni50/SDC shows the combination of highest yield of CO and the best stability among CuNi catalysts. It also has similar yields (39.8%) as Pt/SDC at 700°C, which achieved the equilibrium yield at that temperature (43.9%). The catalyst was stable for 48 hours when exposed to high temperatures (600-700°C). There was no CH4 observed during any of the experiments when the partial pressure of the reactant gases was fed stoichiometrically. Partial pressure variation experiments demonstrated the presence of CH4 when the partial pressure of hydrogen was increased to twice the value of the partial pressure of CO2.
318

Synthesizing Multimodal Imaging Probes and Their Application in Non-Invasive Axonal Tracing by Magnetic Resonance Imaging

Li, Zizhen January 2016 (has links)
Imaging techniques have become much more in demand in modern medicine, especially in fields of disease prognosis, diagnosis and therapeutics. This is because a better understanding of different diseases, characteristics of each patient and further optimizing treatment planning, are all enhanced by advanced imaging techniques. Since each imaging modality has its own merits and intrinsic limitations, combining two or more complementary imaging modalities has become an interesting research area. In this study, gadolinium (Gd3+) doped CdTe quantum dots (QDs) were synthesized and used as multimodal imaging probes of two highly complementary imaging modalities: optical imaging and magnetic resonance imaging. The new imaging probes were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis absorbance spectra, fluorescence spectra (FL) and magnetic resonance imaging (MRI). The optical / MRI imaging probes were further functionalized by conjugating with the axonal tracer dextran amine (10 kDa) for non-invasive axonal tracing observations. Biocompatibility and MRI contrast effect of prepared multimodal imaging probes were investigated by in vitro cell experiments and MRI scanner. Ultimately, it is hoped that this imaging probe will help us better understand the regeneration mechanisms in real time without sacrificing animals at intervening time-points.
319

Design and development of an all-optical active Q-switched Erbium-doped fibre ring laser

Kaboko, Jean-Jacques Monga 31 July 2012 (has links)
M.Phil. / This dissertation describes the design and experimental realization of an all-optical active Q-switched Erbium-doped fibre ring laser. The aim of this research is to propose an approach of Q-switching mechanism for a fibre laser. The Q-switch device combines a fibre Bragg grating and a tunable fibre Fabry-Perot filter. The Q-switching principle is based on dynamic spectral overlapping of two filters, namely FBG based filter and tunable F-P filter. When the spectra overlap, the filter system has the maximum transparency, the laser cavity has minimal losses and it can release the stored power in the form of the giant impulse. A series of experiments are performed to optimize the all-optical active Q-switched Erbium-doped ring laser system in term of output peak power and time duration of laser pulses. Two different Erbium-doped fibres having different Erbium ion concentration are used in this experimental investigation. The first fibre, with an Erbium ion concentration of 2200 ppm and pump absorption of 23.4 at 980 nm is referred to as “high concentration” and the second with an Erbium ion concentration of 960 ppm and pump absorption of 12.4 at 980 nm is referred to as “low concentration” To optimize the Q-switched fibre laser system, different parameters were investigated such as the length of the Erbium-doped fibre, the output coupling ratio, the repetition rate of pulses and the concentration of the Erbium Doped Fibres. The achieved output laser pulse characteristics, peak power and time duration, were 580 mW and 13 μs respectively, at 1 kHz of repetition rate. These characteristics were obtained using a length of 3.5 m “low concentration” Erbium-doped fibre in a ring laser cavity; the output coupling is 90 %, for a pump power of 80 mW. Employing this all-optical Q-switching approach, a simple, robust all-optical active Q-switched Erbium-doped laser is demonstrated.
320

Electrochemical Synthesis and Characterization of Inorganic Materials from Aqueous Solutions

Yuan, Qiuhua 12 1900 (has links)
The dissertation consists of the following three sections: 1. Hydroxyapatite (HA) coatings. In this work, we deposited HA precursor films from weak basic electrolytic solution (pH= 8-9) via an electrochemical approach; the deposits were changed into crystallite coatings of hydroxyapatite by sintering at specific temperatures (600-800 ºC). The formed coatings were mainly characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). XRD patterns show well-defined peaks of HA when sintered under vacuum conditions. FTIR measurements indicate the existence of hydroxyl groups, which were confirmed by the characteristic intensity of the stretching and bending bands at ~3575 and ~630 cm-1, respectively. The SEM shows an adhesive, crack free morphology for the double-layer coating surface of the samples sintered in a vacuum furnace. 2. Silver/polymer/clay nanocomposites. Silver nanoparticles were prepared in layered clay mineral (montmorillonite)/polymer (PVP: poly (vinyl pyrrolidone)) suspension by an electrochemical approach. The silver particles formed in the bulk suspension were stabilized by the PVP and partially exfoliated clay platelets, which acted as protective colloids to prevent coagulation of silver nanoparticles together. The synthesized silver nanoparticles/montmorillonite/PVP composite was characterized and identified by XRD, SEM, and TEM (transmission electron microscopy) measurements. 3. Ce-doped lead zirconate titanate (PZT) thin films. In this study, we fabricated cerium-doped PZT films (molar ratio of Zr/Ti:: 0.5:0.5) via cathodic electrodeposition on the indium tin oxide ( ITO) coated glass substrate. In the preparation process, the PZT films were modified by adding a small amount of cerium dopants, which led to the formation of Ce-doped PZT films after sintering at high temperatures. The fabricated PZT films on the ITO coated glass substrate may be used as electro-optic devices in the industrial application.

Page generated in 0.0431 seconds