• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 2
  • 1
  • Tagged with
  • 25
  • 25
  • 10
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Multi-institutional dose-segmented dosiomic analysis for predicting radiation pneumonitis after lung stereotactic body radiation therapy / 多施設共同研究による肺定位放射線治療後の放射線肺臓炎発症予測に関する線量分布オミクス解析

Adachi, Takanori 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(人間健康科学) / 甲第23826号 / 人健博第97号 / 新制||人健||7(附属図書館) / 京都大学大学院医学研究科人間健康科学系専攻 / (主査)教授 精山 明敏, 教授 椎名 毅, 教授 平井 豊博 / 学位規則第4条第1項該当 / Doctor of Human Health Sciences / Kyoto University / DFAM
22

Planification de radiothérapie externe à partir d'imagerie par résonance magnétique / MRI-only radiotherapy treatment planning

Largent, Axel 17 December 2018 (has links)
En radiothérapie externe, l'imagerie par rayons X (CT-scan et CBCT) est l'imagerie de référence pour la planification et la délivrance du traitement. Le CT-scan permet l'accès aux densités électroniques des tissus, requises pour le calcul de dose. Le CBCT permet le positionnement du patient, le tracking et le gating de la tumeur. Cependant, l'imagerie par rayons X présente un faible contraste entre les tissus mous et est irradiante. Grâce à un meilleur contraste, l'IRM pourrait améliorer le positionnement du patient, la délinéation des volumes d'intérêt, et le ciblage de la dose. L'IRM présente ainsi un intérêt majeur pour la planification de radiothérapie. L'objectif de cette thèse a été premièrement d'optimiser un protocole d'acquisition d'images IRM de la sphère ORL, avec patient en position de traitement. Le second objectif a été de réaliser une dosimétrie à partir de l'IRM. Cependant, à contrario du CT-scan, l'IRM ne fournit pas la densité électronique des tissus. Pour palier cela, une méthode patch-based (PBM) et une méthode de deep learning (DLM) ont été utilisées pour générer des pseudo-CT, et calculer la dose. La DLM fut un réseau antagoniste génératif et la PBM fut développée en utilisant une recherche de patchs similaires avec des descripteurs d'images. Ces méthodes ont été évaluées et comparées à une méthode atlas (ABM) et une méthode d'assignation de densité (BDM) à partir de critères de jugement images et dosimétriques. La DLM et la PBM apparurent comme les méthodes les plus précises. La DLM fut la méthode la plus rapide et robuste aux variations anatomiques. / In external beam radiotherapy, X-ray imaging (CT-scan and CBCT) is the main imaging modality for treatment planning and dose delivery. CT-scan provides the electron density information required for dose calculation. CBCT allows fast imaging for patient positioning, tracking and gating of the tumor. However, X-ray imaging has a poor soft tissue contrast, and it is an ionizing imaging, in contrast of MRI. Thanks to this better soft tissue contrast, MRI could improve patient positioning, tumor and organs at risk delineation, and dose targeting. The introduction of MRI in the radiotherapy workflow is therefore a topical issue. This thesis firstly aims to optimize an MRI protocol with patient in head-and-neck radiotherapy treatment position. This protocol was endorsed by our clinical center. The second aim of this thesis was to conducted dose calculation from MRI. However, this imaging, unlike CT, lacks the electron density information required for dose calculation. To address this issue, an original non-local-mean patch-based method (PBM) and a deep learning method (DLM) were used to generate pseudo-CTs from MRIs, and compute the dose. The DLM was a generative adversarial network, and the PBM was performed by using an approximate nearest neighbor search with MR feature images. These both methods were evaluated and compared to an atlas-based method (ABM) and a bulk density method (BDM). This comparison was performed by using image and dosimetric endpoints. The DLM and PBM appeared the most accurate methods. The DLM was faster and more robust to anatomical variations than the PBM.
23

Optimisation des plans de traitement en radiothérapie grâce aux dernières techniques de calcul de dose rapide / Optimization in radiotherapy treatment planning thanks to a fast dose calculation method

Yang, Ming Chao 13 March 2014 (has links)
Cette thèse s'inscrit dans la perspective des traitements de radiothérapie en insistant sur la nécessité de disposer d’un logiciel de planification de traitement (TPS) rapide et fiable. Le TPS est composé d'un algorithme de calcul de dose et d’une méthode d’optimisation. L'objectif est de planifier le traitement afin de délivrer la dose à la tumeur tout en sauvegardant les tissus sains et sensibles environnant. La planification des traitements consiste à déterminer les paramètres d’irradiation les mieux adaptés au patient. Dans le cadre de cette thèse, les paramètres d'un traitement par RCMI (Radiothérapie Conformationnelle avec Modulation d'Intensité) sont la position de la source, les orientations des faisceaux et, pour chaque faisceau composé de faisceaux élémentaires, la fluence de ces derniers. La fonction objectif est multicritère en associant des contraintes linéaires. L’objectif de la thèse est de démontrer la faisabilité d'une méthode d'optimisation du plan de traitement fondée sur la technique de calcul de dose rapide développée par (Blanpain, 2009). Cette technique s’appuie sur un fantôme segmenté en mailles homogènes. Le calcul de dose s’effectue en deux étapes. La première étape concerne les mailles : les projections et pondérations y sont paramétrées en fonction de critères physiques et géométriques. La seconde étape concerne les voxels: la dose y est calculée en évaluant les fonctions préalablement associées à leur maille.Une reformulation de cette technique permet d’aborder le problème d’optimisation par la méthode de descente de gradient. L’optimisation en continu des paramètres du traitement devient envisageable. Les résultats obtenus dans le cadre de cette thèse ouvrent de nombreuses perspectives dans le domaine de l’optimisation des plans de traitement en radiothérapie. / This thesis deals with the radiotherapy treatments planning issue which need a fast and reliable treatment planning system (TPS). The TPS is composed of a dose calculation algorithm and an optimization method. The objective is to design a plan to deliver the dose to the tumor while preserving the surrounding healthy and sensitive tissues.The treatment planning aims to determine the best suited radiation parameters for each patient’s treatment. In this thesis, the parameters of treatment with IMRT (Intensity modulated radiation therapy) are the beam angle and the beam intensity. The objective function is multicritiria with linear constraints.The main objective of this thesis is to demonstrate the feasibility of a treatment planning optimization method based on a fast dose-calculation technique developed by (Blanpain, 2009). This technique proposes to compute the dose by segmenting the patient’s phantom into homogeneous meshes. The dose computation is divided into two steps. The first step impacts the meshes: projections and weights are set according to physical and geometrical criteria. The second step impacts the voxels: the dose is computed by evaluating the functions previously associated to their mesh.A reformulation of this technique makes possible to solve the optimization problem by the gradient descent algorithm. The main advantage of this method is that the beam angle parameters could be optimized continuously in 3 dimensions. The obtained results in this thesis offer many opportunities in the field of radiotherapy treatment planning optimization.
24

Étude Monte Carlo de l’impact de la tomodensitométrie multiénergie sur la précision du calcul de dose en protonthérapie

Lalonde, Arthur 02 1900 (has links)
No description available.
25

Optimization of the Gamma Knife Treatment Room Design / Optimering av Designen av Gammaknivens Behandlingsrum

Nygren, Nelly January 2021 (has links)
Radiation shielding is a central part of the design of treatment rooms for radiation therapy systems. The dose levels that medical staff and members of the public can be exposed to outside the treatment rooms are regulated by authorities and influence the required wall thicknesses and possible locations for the systems. Several standard methods exist for performing shielding calculations, but they are not well adapted to the stereotactic radiosurgery system Leksell Gamma Knife because of its self-shielding properties. The built-in shielding makes the leakage radiation anisotropic and generally have lower energy than the primary radiation from the Gamma Knife's cobalt sources. Oversimplifications made in the standard shielding calculation methods regarding the field can lead to excessively thick shielding and limit the number of suitable locations for the system.  In this thesis project, a simulation-based dose calculation algorithm was developed, that uses Monte Carlo-generated data in two steps. The algorithm uses a phase space to accurately describe the radiation field around the Gamma Knife. Information about individual photons in the field is then combined with a generated library of data describing the resulting dose outside a wall depending on the wall thickness and the photon energy. The dose calculation algorithm is fast enough to be integrated into optimization processes, in which the algorithm is used iteratively while varying room design parameters. Demonstrated in this report is a case with a room of fixed size, in which the Gamma Knife's position and the walls' thicknesses are varied, with the aim to find the room design resulting in the minimum wall thicknesses needed to achieve acceptable dose levels outside. The results in this thesis indicate that the dose calculation algorithm performs well and could likely be used in more complex optimizations with more design variables and more advanced design goals. / Strålsäkerhet är en viktig aspekt vid uppförandet av behandlingsrum för strål-terapisystem. Strålningsnivåerna som sjukvårdspersonal och allmänheten kan exponeras för utanför behandlingsrummet regleras av myndigheter och påverkar vilken väggtjocklek som behövs och vilka platser som är lämpliga att placera systemen på. Flertalet metoder för strålskyddsberäkning existerar, men de är inte väl anpassade till det stereotaktiska radiokirurgiska systemet Leksell Gamma Knife, eftersom det har ett inbyggt strålskydd. Det inbyggda strålskyddet gör att strålfältet runt Gamma Knife är anisotropt och generellt har lägre energi än primärstrålningen från systemets koboltkällor. Förenklingar som görs rörande strålfältet i flera existerande metoder för strålskyddsberäkning kan leda till att överdrivet tjocka strålskydd används eller begränsa antalet lämpliga platser att placera systemet på. I detta projekt utvecklades en dosberäkningsalgoritm, som i två steg använder data genererad genom Monte Carlo-simuleringar. Algoritmen använder ett fasrum för att detaljerat beskriva strålfältet runt Gamma Knife. Information om enskilda fotoner i fältet används sen i kombination med ett genererat bibliotek av data som beskriver det dosbidrag som en foton bidrar med utanför behandlingsrummet, baserat på fotonens energi och väggarnas tjocklek. Dosberäkningsalgoritmen är snabb nog att integreras i optimeringsprocesser där den används iterativt samtidigt som rumsdesignparametrar varieras. I denna rapport demonstreras ett fall med ett rum av bestämd storlek, där positionen av Gamma Knife i rummet och väggarnas tjocklekar varieras. Optimeringens syfte i exemplet är att hitta den rumsdesign som med de minsta väggtjocklekarna resulterar i acceptabla strålningsnivåer utanför rummet. Resultaten tyder på att dosberäkningsalgoritmen sannolikt kan användas i mer komplexa optimeringar med fler designvariabler och mer avancerade designmål.

Page generated in 0.1394 seconds