Spelling suggestions: "subject:"drahtlose"" "subject:"drahtlosen""
1 |
Energieautarkes drahtloses SensornetzwerkLutzmayr, Dieter, Pauritsch, Manfred 13 February 2024 (has links)
Im Energie- und Produktionssektor ist für das Heben von Potentialen für Energie- und Ressourceneffizienz
von Prozessen viel Sensorik notwendig. Verkabelte Systeme sind dafür aufgrund hoher Installationskosten
und geringer Flexibilität oftmals nicht geeignet. Notwendig ist ein kostengünstiges,
nachrüstbares und energieautarkes drahtloses Sensornetzwerk (WSN – Wireless Sensor Network)
für Energie- und Condition Monitoring (Strom-, Spannungs-, Vibrations-, Temperaturmessung). Ein
wesentlicher Innovationsschritt ist die Anwendung und intelligente Kombination neuer Funktechnologien
wie UWB (Ultra-Wideband) und LoRa (Long Range) sowie von Energy Harvesting zum autarken
Betrieb der Sensorknoten. Mit einem systemischen Ansatz der Kombination vorgenannter Komponenten
wird das Sensornetz hinsichtlich Verlässlichkeit, Skalierbarkeit und Flexibilität in Bezug
auf die Anwendung optimiert. Der Proof-of-Concept (PoC) wird mit einem Testaufbau des WSN im
Labormaßstab an konkreten Use Cases aus den Bereichen Windkraftanlagen und industrieller Produktion
erbracht.
|
2 |
A Pragmatic Approach to Diversity-Enabled Ultra-Reliable Low-Latency CommunicationsSchwarzenberg, Nick 06 November 2024 (has links)
Under the term ultra-reliable low-latency communications (URLLC), the 5th generation (5G) of cellular networks promises to deliver 99.999 % of sent data packets within one millisecond. Such ambitious figures are demanded by industrial use cases with closed-loop motion control, for example. But as of today, no commercially available wireless system is known to actually meet these requirements. There are three major limits to reliable wireless communications: (1) sudden loss of signal power between transmitter and receiver (fading), (2) third-party interference from other wireless devices, and (3) propagation-related signal distortion independent of noise and third-party interference. This thesis focuses on problems (1) and (3). It presents practical insights and latency-friendly solutions to improve reliability using frequency diversity. First, multi-connectivity with diversity combining on the physical layer is evaluated for IEEE 802.11 wireless local area networks by means of Monte-Carlo simulations assuming various fading models. With increasing number of uncorrelated links, multi-connectivity achieves much lower error rates than a single link. Joint decoding based on distributed turbo coding is found to outperform the established combining schemes selection combining and maximum ratio combining when considering receiver imperfections in the presence of doubly-selective fading. This was not expected from theoretical work and shows the importance of studies going beyond simplified analytical models. To better understand the wireless propagation conditions in practice, high-resolution channel measurements are captured at a Bosch factory hall and analyzed with a focus on reliability. Metallic surfaces in the environment are found to lead to a small path loss over distance, but also to severe fading. Fortunately, the coherence bandwidth is small which promotes the use of frequency diversity. To overcome the low spectral efficiency of multi-connectivity, schemes for dynamically allocating bandwidth to many users in real-time are developed and evaluated in Monte-Carlo simulations using the factory hall measurements. A low-complexity algorithm for channel-aware allocation is proposed and found to perform very close to a best-case bound. It is shown that computational complexity and sounding overhead can be reduced with negligible loss of reliability by increasing subchannel width and channel state update interval in accordance with coherence bandwidth and time. In conclusion, the insights on multi-connectivity and the channel-aware allocation algorithm are believed to be valuable contributions to fulfill the URLLC promise.
|
3 |
Real-Time Waveform PrototypingDanneberg, Martin 01 March 2022 (has links)
Mobile Netzwerke der fünften Generation zeichen sich aus durch vielfältigen Anforderungen und Einsatzszenarien. Drei unterschiedliche Anwendungsfälle sind hierbei besonders relevant: 1) Industrie-Applikationen fordern Echtzeitfunkübertragungen mit besonders niedrigen Ausfallraten. 2) Internet-of-things-Anwendungen erfordern die Anbindung einer Vielzahl von verteilten Sensoren. 3) Die Datenraten für Anwendung wie z.B. der Übermittlung von Videoinhalten sind massiv gestiegen.
Diese zum Teil gegensätzlichen Erwartungen veranlassen Forscher und Ingenieure dazu, neue Konzepte und Technologien für zukünftige drahtlose Kommunikationssysteme in Betracht zu ziehen. Ziel ist es, aus einer Vielzahl neuer Ideen vielversprechende Kandidatentechnologien zu identifizieren und zu entscheiden, welche für die Umsetzung in zukünftige Produkte geeignet sind. Die Herausforderungen, diese Anforderungen zu erreichen, liegen jedoch jenseits der Möglichkeiten, die eine einzelne Verarbeitungsschicht in einem drahtlosen Netzwerk bieten kann. Daher müssen mehrere Forschungsbereiche Forschungsideen gemeinsam nutzen.
Diese Arbeit beschreibt daher eine Plattform als Basis für zukünftige experimentelle Erforschung von drahtlosen Netzwerken unter reellen Bedingungen. Es werden folgende drei Aspekte näher vorgestellt:
Zunächst erfolgt ein Überblick über moderne Prototypen und Testbed-Lösungen, die auf großes Interesse, Nachfrage, aber auch Förderungsmöglichkeiten stoßen. Allerdings ist der Entwicklungsaufwand nicht unerheblich und richtet sich stark nach den gewählten Eigenschaften der Plattform. Der Auswahlprozess ist jedoch aufgrund der Menge der verfügbaren Optionen und ihrer jeweiligen (versteckten) Implikationen komplex. Daher wird ein Leitfaden anhand verschiedener Beispiele vorgestellt, mit dem Ziel Erwartungen im Vergleich zu den für den Prototyp erforderlichen Aufwänden zu bewerten.
Zweitens wird ein flexibler, aber echtzeitfähiger Signalprozessor eingeführt, der auf einer software-programmierbaren Funkplattform läuft. Der Prozessor ermöglicht die Rekonfiguration wichtiger Parameter der physikalischen Schicht während der Laufzeit, um eine Vielzahl moderner Wellenformen zu erzeugen. Es werden vier Parametereinstellungen 'LLC', 'WiFi', 'eMBB' und 'IoT' vorgestellt, um die Anforderungen der verschiedenen drahtlosen Anwendungen widerzuspiegeln. Diese werden dann zur Evaluierung der die in dieser Arbeit vorgestellte Implementierung herangezogen.
Drittens wird durch die Einführung einer generischen Testinfrastruktur die Einbeziehung externer Partner aus der Ferne ermöglicht. Das Testfeld kann hier für verschiedenste Experimente flexibel auf die Anforderungen drahtloser Technologien zugeschnitten werden. Mit Hilfe der Testinfrastruktur wird die Leistung des vorgestellten Transceivers hinsichtlich Latenz, erreichbarem Durchsatz und Paketfehlerraten bewertet. Die öffentliche Demonstration eines taktilen Internet-Prototypen, unter Verwendung von Roboterarmen in einer Mehrbenutzerumgebung, konnte erfolgreich durchgeführt und bei mehreren Gelegenheiten präsentiert werden.:List of figures
List of tables
Abbreviations
Notations
1 Introduction
1.1 Wireless applications
1.2 Motivation
1.3 Software-Defined Radio
1.4 State of the art
1.5 Testbed
1.6 Summary
2 Background
2.1 System Model
2.2 PHY Layer Structure
2.3 Generalized Frequency Division Multiplexing
2.4 Wireless Standards
2.4.1 IEEE 802.15.4
2.4.2 802.11 WLAN
2.4.3 LTE
2.4.4 Low Latency Industrial Wireless Communications
2.4.5 Summary
3 Wireless Prototyping
3.1 Testbed Examples
3.1.1 PHY - focused Testbeds
3.1.2 MAC - focused Testbeds
3.1.3 Network - focused testbeds
3.1.4 Generic testbeds
3.2 Considerations
3.3 Use cases and Scenarios
3.4 Requirements
3.5 Methodology
3.6 Hardware Platform
3.6.1 Host
3.6.2 FPGA
3.6.3 Hybrid
3.6.4 ASIC
3.7 Software Platform
3.7.1 Testbed Management Frameworks
3.7.2 Development Frameworks
3.7.3 Software Implementations
3.8 Deployment
3.9 Discussion
3.10 Conclusion
4 Flexible Transceiver
4.1 Signal Processing Modules
4.1.1 MAC interface
4.1.2 Encoding and Mapping
4.1.3 Modem
4.1.4 Post modem processing
4.1.5 Synchronization
4.1.6 Channel Estimation and Equalization
4.1.7 Demapping
4.1.8 Flexible Configuration
4.2 Analysis
4.2.1 Numerical Precision
4.2.2 Spectral analysis
4.2.3 Latency
4.2.4 Resource Consumption
4.3 Discussion
4.3.1 Extension to MIMO
4.4 Summary
5 Testbed
5.1 Infrastructure
5.2 Automation
5.3 Software Defined Radio Platform
5.4 Radio Frequency Front-end
5.4.1 Sub 6 GHz front-end
5.4.2 26 GHz mmWave front-end
5.5 Performance evaluation
5.6 Summary
6 Experiments
6.1 Single Link
6.1.1 Infrastructure
6.1.2 Single Link Experiments
6.1.3 End-to-End
6.2 Multi-User
6.3 26 GHz mmWave experimentation
6.4 Summary
7 Key lessons
7.1 Limitations Experienced During Development
7.2 Prototyping Future
7.3 Open points
7.4 Workflow
7.5 Summary
8 Conclusions
8.1 Future Work
8.1.1 Prototyping Workflow
8.1.2 Flexible Transceiver Core
8.1.3 Experimental Data-sets
8.1.4 Evolved Access Point Prototype For Industrial Networks
8.1.5 Testbed Standardization
A Additional Resources
A.1 Fourier Transform Blocks
A.2 Resource Consumption
A.3 Channel Sounding using Chirp sequences
A.3.1 SNR Estimation
A.3.2 Channel Estimation
A.4 Hardware part list / The demand to achieve higher data rates for the Enhanced Mobile Broadband scenario and novel fifth generation use cases like Ultra-Reliable Low-Latency and Massive Machine-type Communications drive researchers and engineers to consider new concepts and technologies for future wireless communication systems. The goal is to identify promising candidate technologies
among a vast number of new ideas and to decide, which are suitable for implementation in future products. However, the challenges to achieve those demands are beyond the capabilities a single processing layer in a wireless network can offer. Therefore, several research domains have to collaboratively exploit research ideas.
This thesis presents a platform to provide a base for future applied research on wireless networks. Firstly, by giving an overview of state-of-the-art prototypes and testbed solutions. Secondly by introducing a flexible, yet real-time physical layer signal processor running on a software defined radio platform. The processor enables reconfiguring important parameters of the physical layer during run-time in order to create a multitude of modern waveforms. Thirdly, by introducing a generic test infrastructure, which can be tailored to prototype diverse wireless technology and which is remotely accessible in order to invite new ideas by third parties. Using the test infrastructure, the performance of the flexible transceiver is evaluated regarding latency, achievable throughput and packet error rates.:List of figures
List of tables
Abbreviations
Notations
1 Introduction
1.1 Wireless applications
1.2 Motivation
1.3 Software-Defined Radio
1.4 State of the art
1.5 Testbed
1.6 Summary
2 Background
2.1 System Model
2.2 PHY Layer Structure
2.3 Generalized Frequency Division Multiplexing
2.4 Wireless Standards
2.4.1 IEEE 802.15.4
2.4.2 802.11 WLAN
2.4.3 LTE
2.4.4 Low Latency Industrial Wireless Communications
2.4.5 Summary
3 Wireless Prototyping
3.1 Testbed Examples
3.1.1 PHY - focused Testbeds
3.1.2 MAC - focused Testbeds
3.1.3 Network - focused testbeds
3.1.4 Generic testbeds
3.2 Considerations
3.3 Use cases and Scenarios
3.4 Requirements
3.5 Methodology
3.6 Hardware Platform
3.6.1 Host
3.6.2 FPGA
3.6.3 Hybrid
3.6.4 ASIC
3.7 Software Platform
3.7.1 Testbed Management Frameworks
3.7.2 Development Frameworks
3.7.3 Software Implementations
3.8 Deployment
3.9 Discussion
3.10 Conclusion
4 Flexible Transceiver
4.1 Signal Processing Modules
4.1.1 MAC interface
4.1.2 Encoding and Mapping
4.1.3 Modem
4.1.4 Post modem processing
4.1.5 Synchronization
4.1.6 Channel Estimation and Equalization
4.1.7 Demapping
4.1.8 Flexible Configuration
4.2 Analysis
4.2.1 Numerical Precision
4.2.2 Spectral analysis
4.2.3 Latency
4.2.4 Resource Consumption
4.3 Discussion
4.3.1 Extension to MIMO
4.4 Summary
5 Testbed
5.1 Infrastructure
5.2 Automation
5.3 Software Defined Radio Platform
5.4 Radio Frequency Front-end
5.4.1 Sub 6 GHz front-end
5.4.2 26 GHz mmWave front-end
5.5 Performance evaluation
5.6 Summary
6 Experiments
6.1 Single Link
6.1.1 Infrastructure
6.1.2 Single Link Experiments
6.1.3 End-to-End
6.2 Multi-User
6.3 26 GHz mmWave experimentation
6.4 Summary
7 Key lessons
7.1 Limitations Experienced During Development
7.2 Prototyping Future
7.3 Open points
7.4 Workflow
7.5 Summary
8 Conclusions
8.1 Future Work
8.1.1 Prototyping Workflow
8.1.2 Flexible Transceiver Core
8.1.3 Experimental Data-sets
8.1.4 Evolved Access Point Prototype For Industrial Networks
8.1.5 Testbed Standardization
A Additional Resources
A.1 Fourier Transform Blocks
A.2 Resource Consumption
A.3 Channel Sounding using Chirp sequences
A.3.1 SNR Estimation
A.3.2 Channel Estimation
A.4 Hardware part list
|
4 |
Energieeffiziente Kommunikation in verteilten, eingebetteten Systemen / Energy-Efficient Communication in Distributed, Embedded SystemsVodel, Matthias 21 September 2015 (has links) (PDF)
Verteilte, Eingebettete Systeme beeinflussen unser tägliches Leben in unzähligen Bereichen. Getrieben durch technologische Weiterentwicklungen und neue Nutzungsprofile nimmt der Vernetzungsgrad elektronischer Geräte rapide zu. Neben einem ausgeprägten Netzwerkcharakter sind aktuelle und zukünftige Anwendungsszenarien wesentlich durch einen hohen Mobilitätsgrad geprägt. Daraus ergeben sich zunehmend Problemstellungen bzgl. geeigneter Kommunikationskonzepte und der hierfür benötigten Energieressourcen.
Dieses Buch befasst sich mit Technologien, Konzepten und Protokollen zur energieeffizienten Kommunikation in verteilten, ressourcenbeschränkten Systemen. Es definiert grundlegende Begrifflichkeiten und vermittelt einen umfassenden Einblick in die verschiedenen Forschungsschwerpunkte. Relevante, technologische Entwicklungen der beiden letzten Dekaden werden vorgestellt, thematisch eingeordnet und kritisch analysiert. Anschließend erfolgt die funktional getrennte Betrachtung von Kommunikationsprozessen auf Netzwerk-, Daten- sowie Energiemanagementebene.
Darauf aufbauend widmet sich das Buch der Systemintegration und damit einhergehend dem komplexen Systemkonfigurationsprozess. Unter Berücksichtigung applikationsspezifischer Rahmenbedingungen sowie funktionaler Anforderungen werden gezielt geeignete Optimierungsstrategien ausgewählt und in einer ganzheitlich angepassten Systemarchitektur kombiniert. Erst durch das präzise Zusammenspiel von Kommunikationsparadigma, Kommunikationstechnologien und Kommunikationsprotokollen entsteht ein optimiertes Gesamtsystem, welches die zur Verfügung stehenden Ressourcen effizient nutzt. Zur Bewertung kommt ein neu entwickeltes, erweitertes Quantifizierungsmodell zum Einsatz, welches die kommunikativen Aspekte verteilter Applikationsszenarien vollständig einbezieht.
Im Rahmen umfangreicher Fallstudien werden ausgewählte Optimierungsverfahren simulativ sowie auf Basis unterschiedlicher Hardwareplattformen evaluiert. Aus den Ergebnissen resultieren qualitative und quantitative Rückschlüsse auf das mögliche Optimierungspotential unter realen Einsatzbedingungen. Die gewonnenen Erkenntnisse dienen als wichtige Richtgrößen für zukünftige Entwicklungen im Bereich eingebetteter, ressourcenbeschränkter Kommunikationssysteme. / Embedded systems are used in almost every domain of our daily lives. Actual research and development activities focus on wireless connected and mobile system architectures. The resulting network topologies represent embedded, distributed systems, which are able to process complex tasks in a collaborative way. Most of the respective hardware platforms are energy self-sufficient with strongly limited resources for data processing, data storage and communication.
With focus on the energy resources, communication tasks have a huge impact on the systems power consumption. In order to optimise the energy efficiency of these communication tasks, one key challenge for engineers is the application-specific integration of adapted communication concepts, radio technologies, and protocol stacks into an all-embracing communication architecture.
This book critically discusses energy efficiency in distributed, embedded systems with focus on the communication aspects. The first part introduces basic definitions as well as a novel estimation model for quantifying energy efficiency on both local (system) and global (network) layer.
In the second part, this book proposes several optimisation approaches for energy-efficient, resource-limited communication systems. This include hardware approaches as well as software approaches to optimise the runtime environment and the data processing tasks. Each approach operates on different abstraction layers within the system architecture.
The last part of the book deals with the evaluation of specific optimisation strategies under real-world conditions. The test cases includes simulation scenarios as well as hardware test benches within a heterogeneous network environment. The respective results and analyses represent important guidelines for future developments in field of distributed, embedded communication platforms.
|
5 |
Energieeffiziente Kommunikation in verteilten, eingebetteten Systemen / Energy-Efficient Communication in Distributed, Embedded SystemsVodel, Matthias 07 February 2014 (has links) (PDF)
Verteilte, Eingebettete Systeme beeinflussen unser tägliches Leben in unzähligen Bereichen. Getrieben durch technologische Weiterentwicklungen und neue Nutzungsprofile nimmt der Vernetzungsgrad elektronischer Geräte rapide zu. Neben einem ausgeprägten Netzwerkcharakter sind aktuelle und zukünftige Anwendungsszenarien wesentlich durch einen hohen Mobilitätsgrad geprägt. Daraus ergeben sich zunehmend Problemstellungen bzgl. geeigneter Kommunikationskonzepte und der hierfür benötigten Energieressourcen.
Dieses Buch befasst sich mit Technologien, Konzepten und Protokollen zur energieeffizienten Kommunikation in verteilten, ressourcenbeschränkten Systemen. Es definiert grundlegende Begrifflichkeiten und vermittelt einen umfassenden Einblick in die verschiedenen Forschungsschwerpunkte. Relevante, technologische Entwicklungen der beiden letzten Dekaden werden vorgestellt, thematisch eingeordnet und kritisch analysiert. Anschließend erfolgt die funktional getrennte Betrachtung von Kommunikationsprozessen auf Netzwerk-, Daten- sowie Energiemanagementebene.
Darauf aufbauend widmet sich das Buch der Systemintegration und damit einhergehend dem komplexen Systemkonfigurationsprozess. Unter Berücksichtigung applikationsspezifischer Rahmenbedingungen sowie funktionaler Anforderungen werden gezielt geeignete Optimierungsstrategien ausgewählt und in einer ganzheitlich angepassten Systemarchitektur kombiniert. Erst durch das präzise Zusammenspiel von Kommunikationsparadigma, Kommunikationstechnologien und Kommunikationsprotokollen entsteht ein optimiertes Gesamtsystem, welches die zur Verfügung stehenden Ressourcen effizient nutzt. Zur Bewertung kommt ein neu entwickeltes, erweitertes Quantifizierungsmodell zum Einsatz, welches die kommunikativen Aspekte verteilter Applikationsszenarien vollständig einbezieht.
Im Rahmen umfangreicher Fallstudien werden ausgewählte Optimierungsverfahren simulativ sowie auf Basis unterschiedlicher Hardwareplattformen evaluiert. Aus den Ergebnissen resultieren qualitative und quantitative Rückschlüsse auf das mögliche Optimierungspotential unter realen Einsatzbedingungen. Die gewonnenen Erkenntnisse dienen als wichtige Richtgrößen für zukünftige Entwicklungen im Bereich eingebetteter, ressourcenbeschränkter Kommunikationssysteme. / Embedded systems are used in almost every domain of our daily lives. Actual research and development activities focus on wireless connected and mobile system architectures. The resulting network topologies represent embedded, distributed systems, which are able to process complex tasks in a collaborative way. Most of the respective hardware platforms are energy self-sufficient with strongly limited resources for data processing, data storage and communication.
With focus on the energy resources, communication tasks have a huge impact on the systems power consumption. In order to optimise the energy efficiency of these communication tasks, one key challenge for engineers is the application-specific integration of adapted communication concepts, radio technologies, and protocol stacks into an all-embracing communication architecture.
This book critically discusses energy efficiency in distributed, embedded systems with focus on the communication aspects. The first part introduces basic definitions as well as a novel estimation model for quantifying energy efficiency on both local (system) and global (network) layer.
In the second part, this book proposes several optimisation approaches for energy-efficient, resource-limited communication systems. This include hardware approaches as well as software approaches to optimise the runtime environment and the data processing tasks. Each approach operates on different abstraction layers within the system architecture.
The last part of the book deals with the evaluation of specific optimisation strategies under real-world conditions. The test cases includes simulation scenarios as well as hardware test benches within a heterogeneous network environment. The respective results and analyses represent important guidelines for future developments in field of distributed, embedded communication platforms.
|
6 |
Pathways to servers of the futureLehner, Wolfgang, Nagel, Wolfgang, Fettweis, Gerhard 11 January 2023 (has links)
The Special Session on “Pathways to Servers of the Future” outlines a new research program set up at Technische Universität Dresden addressing the increasing energy demand of global internet usage and the resulting ecological impact of it. The program pursues a novel holistic approach that considers hardware as well as software adaptivity to significantly increase energy efficiency, while suitably addressing application demands. The session presents the research challenges and industry perspective.
|
7 |
Energieeffiziente Kommunikation in verteilten, eingebetteten SystemenVodel, Matthias 07 February 2014 (has links)
Verteilte, Eingebettete Systeme beeinflussen unser tägliches Leben in unzähligen Bereichen. Getrieben durch technologische Weiterentwicklungen und neue Nutzungsprofile nimmt der Vernetzungsgrad elektronischer Geräte rapide zu. Neben einem ausgeprägten Netzwerkcharakter sind aktuelle und zukünftige Anwendungsszenarien wesentlich durch einen hohen Mobilitätsgrad geprägt. Daraus ergeben sich zunehmend Problemstellungen bzgl. geeigneter Kommunikationskonzepte und der hierfür benötigten Energieressourcen.
Dieses Buch befasst sich mit Technologien, Konzepten und Protokollen zur energieeffizienten Kommunikation in verteilten, ressourcenbeschränkten Systemen. Es definiert grundlegende Begrifflichkeiten und vermittelt einen umfassenden Einblick in die verschiedenen Forschungsschwerpunkte. Relevante, technologische Entwicklungen der beiden letzten Dekaden werden vorgestellt, thematisch eingeordnet und kritisch analysiert. Anschließend erfolgt die funktional getrennte Betrachtung von Kommunikationsprozessen auf Netzwerk-, Daten- sowie Energiemanagementebene.
Darauf aufbauend widmet sich das Buch der Systemintegration und damit einhergehend dem komplexen Systemkonfigurationsprozess. Unter Berücksichtigung applikationsspezifischer Rahmenbedingungen sowie funktionaler Anforderungen werden gezielt geeignete Optimierungsstrategien ausgewählt und in einer ganzheitlich angepassten Systemarchitektur kombiniert. Erst durch das präzise Zusammenspiel von Kommunikationsparadigma, Kommunikationstechnologien und Kommunikationsprotokollen entsteht ein optimiertes Gesamtsystem, welches die zur Verfügung stehenden Ressourcen effizient nutzt. Zur Bewertung kommt ein neu entwickeltes, erweitertes Quantifizierungsmodell zum Einsatz, welches die kommunikativen Aspekte verteilter Applikationsszenarien vollständig einbezieht.
Im Rahmen umfangreicher Fallstudien werden ausgewählte Optimierungsverfahren simulativ sowie auf Basis unterschiedlicher Hardwareplattformen evaluiert. Aus den Ergebnissen resultieren qualitative und quantitative Rückschlüsse auf das mögliche Optimierungspotential unter realen Einsatzbedingungen. Die gewonnenen Erkenntnisse dienen als wichtige Richtgrößen für zukünftige Entwicklungen im Bereich eingebetteter, ressourcenbeschränkter Kommunikationssysteme. / Embedded systems are used in almost every domain of our daily lives. Actual research and development activities focus on wireless connected and mobile system architectures. The resulting network topologies represent embedded, distributed systems, which are able to process complex tasks in a collaborative way. Most of the respective hardware platforms are energy self-sufficient with strongly limited resources for data processing, data storage and communication.
With focus on the energy resources, communication tasks have a huge impact on the systems power consumption. In order to optimise the energy efficiency of these communication tasks, one key challenge for engineers is the application-specific integration of adapted communication concepts, radio technologies, and protocol stacks into an all-embracing communication architecture.
This book critically discusses energy efficiency in distributed, embedded systems with focus on the communication aspects. The first part introduces basic definitions as well as a novel estimation model for quantifying energy efficiency on both local (system) and global (network) layer.
In the second part, this book proposes several optimisation approaches for energy-efficient, resource-limited communication systems. This include hardware approaches as well as software approaches to optimise the runtime environment and the data processing tasks. Each approach operates on different abstraction layers within the system architecture.
The last part of the book deals with the evaluation of specific optimisation strategies under real-world conditions. The test cases includes simulation scenarios as well as hardware test benches within a heterogeneous network environment. The respective results and analyses represent important guidelines for future developments in field of distributed, embedded communication platforms.
|
8 |
Energieeffiziente Kommunikation in verteilten, eingebetteten SystemenVodel, Matthias 21 September 2015 (has links)
Verteilte, Eingebettete Systeme beeinflussen unser tägliches Leben in unzähligen Bereichen. Getrieben durch technologische Weiterentwicklungen und neue Nutzungsprofile nimmt der Vernetzungsgrad elektronischer Geräte rapide zu. Neben einem ausgeprägten Netzwerkcharakter sind aktuelle und zukünftige Anwendungsszenarien wesentlich durch einen hohen Mobilitätsgrad geprägt. Daraus ergeben sich zunehmend Problemstellungen bzgl. geeigneter Kommunikationskonzepte und der hierfür benötigten Energieressourcen.
Dieses Buch befasst sich mit Technologien, Konzepten und Protokollen zur energieeffizienten Kommunikation in verteilten, ressourcenbeschränkten Systemen. Es definiert grundlegende Begrifflichkeiten und vermittelt einen umfassenden Einblick in die verschiedenen Forschungsschwerpunkte. Relevante, technologische Entwicklungen der beiden letzten Dekaden werden vorgestellt, thematisch eingeordnet und kritisch analysiert. Anschließend erfolgt die funktional getrennte Betrachtung von Kommunikationsprozessen auf Netzwerk-, Daten- sowie Energiemanagementebene.
Darauf aufbauend widmet sich das Buch der Systemintegration und damit einhergehend dem komplexen Systemkonfigurationsprozess. Unter Berücksichtigung applikationsspezifischer Rahmenbedingungen sowie funktionaler Anforderungen werden gezielt geeignete Optimierungsstrategien ausgewählt und in einer ganzheitlich angepassten Systemarchitektur kombiniert. Erst durch das präzise Zusammenspiel von Kommunikationsparadigma, Kommunikationstechnologien und Kommunikationsprotokollen entsteht ein optimiertes Gesamtsystem, welches die zur Verfügung stehenden Ressourcen effizient nutzt. Zur Bewertung kommt ein neu entwickeltes, erweitertes Quantifizierungsmodell zum Einsatz, welches die kommunikativen Aspekte verteilter Applikationsszenarien vollständig einbezieht.
Im Rahmen umfangreicher Fallstudien werden ausgewählte Optimierungsverfahren simulativ sowie auf Basis unterschiedlicher Hardwareplattformen evaluiert. Aus den Ergebnissen resultieren qualitative und quantitative Rückschlüsse auf das mögliche Optimierungspotential unter realen Einsatzbedingungen. Die gewonnenen Erkenntnisse dienen als wichtige Richtgrößen für zukünftige Entwicklungen im Bereich eingebetteter, ressourcenbeschränkter Kommunikationssysteme. / Embedded systems are used in almost every domain of our daily lives. Actual research and development activities focus on wireless connected and mobile system architectures. The resulting network topologies represent embedded, distributed systems, which are able to process complex tasks in a collaborative way. Most of the respective hardware platforms are energy self-sufficient with strongly limited resources for data processing, data storage and communication.
With focus on the energy resources, communication tasks have a huge impact on the systems power consumption. In order to optimise the energy efficiency of these communication tasks, one key challenge for engineers is the application-specific integration of adapted communication concepts, radio technologies, and protocol stacks into an all-embracing communication architecture.
This book critically discusses energy efficiency in distributed, embedded systems with focus on the communication aspects. The first part introduces basic definitions as well as a novel estimation model for quantifying energy efficiency on both local (system) and global (network) layer.
In the second part, this book proposes several optimisation approaches for energy-efficient, resource-limited communication systems. This include hardware approaches as well as software approaches to optimise the runtime environment and the data processing tasks. Each approach operates on different abstraction layers within the system architecture.
The last part of the book deals with the evaluation of specific optimisation strategies under real-world conditions. The test cases includes simulation scenarios as well as hardware test benches within a heterogeneous network environment. The respective results and analyses represent important guidelines for future developments in field of distributed, embedded communication platforms.
|
Page generated in 0.0338 seconds