1 |
Modelle zur Bestimmung der Relativbewegung der Phasen in einer Zweiphasenstroemung - Stand der TechnikSchaffrath, Andreas, Ringel, Heiko 31 March 2010 (has links) (PDF)
Für zahlreiche technische Prozesse ist die Kenntnis des Schlupfes bzw. des Drift-Fluxes in Zweiphasenströmungen notwendig. Beispiele sind die Bestimmung der Druckverluste sowie der Wärme- und Stoffübertragungsvorgänge in Verdampfern oder Kondensatoren, der Phasenverweilzeit in chemischen Reaktoren sowie der Moderatorwirkung des zweiphasigen Kühlmittels innerhalb des Kerns eines Siedewasserreaktors.
|
2 |
Modelle zur Bestimmung der Relativbewegung der Phasen in einer Zweiphasenstroemung - Stand der TechnikSchaffrath, Andreas, Ringel, Heiko January 2000 (has links)
Für zahlreiche technische Prozesse ist die Kenntnis des Schlupfes bzw. des Drift-Fluxes in Zweiphasenströmungen notwendig. Beispiele sind die Bestimmung der Druckverluste sowie der Wärme- und Stoffübertragungsvorgänge in Verdampfern oder Kondensatoren, der Phasenverweilzeit in chemischen Reaktoren sowie der Moderatorwirkung des zweiphasigen Kühlmittels innerhalb des Kerns eines Siedewasserreaktors.
|
3 |
Boiling Water Reactor Core Simulation with Generalized Isotopic Inventory Tracking for Actinide ManagementGalloway, Jack Douglas 01 August 2010 (has links)
The computational ability to accurately simulate boiling water reactor operation under the full range of standard steady-state operation, along with the capability to fully track the isotopic distribution of any fueled region in any location in the core has been developed. This new three-dimensional node-by-node capability can help designers track, for example, a full suite of minor and major actinides, fission products, and even light elements that result from depletion, decay, or transmutations. This isotopic tracking capability is not restricted to BWRs and can be employed in the modeling of PWRs, CANDUs, and other reactor types that can be modeled with the NESTLE code, the base core simulator employed in this research.
To accurately simulate boiling water reactor operation, a major thermal-hydraulics upgrade was performed which involved the implementation of a drift-flux solution scheme to model steady-state boiling water flow. Sub-cooled boiling and bulk boiling are accurately modeled and a scheme for computing the correct flow distribution has been implemented. In addition, the incorporation of a nodal ORIGEN-based microscopic depletion solution has been included which allows for exceptional detail in tracking a large number of elements in every node of a core design, thus accounting for spectral dependencies such as moderator density effects, moderator temperature effects, fuel temperature effects, as well as controlled or uncontrolled conditions.
The results of this study show the excellent fidelity of the two-phase solution for accurately predicting the boiling of water when compared to experimental results. Likewise, the isotopic inventory results show near-identical agreement with the well-established and validated ORIGEN-based SCALE/TRITON isotopic depletion sequence. The aim of these developments is to eventually produce a publicly available three-dimensional core simulator capable of assessing detailed isotopic inventories, a capability particularly valuable for the evaluation of recycling scenarios and actinide management in a variety of reactor types and fuel designs.
|
4 |
Uncertainty Quantification and Accuracy Improvement of the Double-Sensor Conductivity Probe for Two-Phase Flow MeasurementWang, Dewei 29 October 2019 (has links)
The double-sensor conductivity probe is one of the most commonly used techniques for obtaining local time-averaged parameters in two-phase flows. The uncertainty of this measurement technique has not been well understood in the past as it involves many different steps and influential factors in a typical measurement. This dissertation aims to address this gap by performing a systematic and comprehensive study on the measurement uncertainty of the probe. Three types of uncertainties are analyzed: that of measurands, of the model input parameters, and of the mathematical models. A Monte Carlo uncertainty evaluation framework closely simulating the actual measuring process is developed to link various uncertainty sources to the time-averaged two-phase flow quantities outputted by the probe. Based on the Monte Carlo uncertainty evaluation framework, an iteration method is developed to infer the true values of the quantities that are being measured. A better understanding of the uncertainty of the double-sensor conductivity probe is obtained.
Multiple advanced techniques, such as high speed optical imaging and fast X-ray densitometry, recently become mature and easily accessible. To further improve the accuracy of local two-phase flow measurement, a method is developed to integrate these techniques with the double-sensor conductivity probe by considering the measuring principles and unique advantages of each technique. It has been demonstrated that after processing and synergizing the data from different techniques using the current integration method, the final results show improved accuracy for void fraction, gas velocity and superficial gas velocity, compared to the original probe measurements.
High-resolution two-phase flow data is essential for the further development of various two-phase flow models and validation of two-phase CFD codes. Therefore, a comprehensive high-accuracy database of two-phase flows is acquired. The gas-phase information is obtained by the integration method developed in this dissertation, and the recently developed Particle Image Velocimetry and Planar Laser Induced Fluorescence (PIV-PLIF) technique is utilized to measure liquid-phase velocity and turbulence characteristics. Flow characteristics of bubbly flow, slug flow and churn-turbulent flow are investigated. The 1-D drift-flux model is re-evaluated by the newly obtained dataset. The distribution parameter model has been optimized based on a new void-profile classification method proposed in this study. The optimized drift-flux model has significant improvements in predicting both gas velocity and void fraction. / Doctor of Philosophy / The double-sensor conductivity probe is one widely used technique for measuring local time-averaged parameters in two-phase flows. Although a number of studies have been carried out in the past, a good understanding of the uncertainty of this technique is still lacking. This paper aims to address this gap by performing a systematic and comprehensive study on the measurement uncertainty of the probe. Three types of uncertainties are analyzed: that of measurands, of the model input parameters, and of the mathematical models. A better understanding of the uncertainty of the double-sensor conductivity probe has been obtained. Considering the unique measuring principles and advantages of multiple advanced techniques, a method is developed to integrate these techniques with the double-sensor conductivity probe to further improve the accuracy of local two-phase flow measurement. It has been demonstrated that the integration method significantly improves the accuracy of probe measurements. Realizing the needs of high-resolution two-phase flow data to the further development of various two-phase flow models and validation of two-phase CFD codes, a comprehensive database of two-phase flows is acquired. The gas-phase and liquid-phase information are acquired by the new integration method and the recently developed Particle Image Velocimetry and Planar Laser Induced Fluorescence (PIV-PLIF) technique, respectively. The classical 1-D drift-flux model is re-evaluated by the newly obtained dataset. The distribution parameter model has been optimized, resulting in significant improvements in predicting both gas velocity and void fraction.
|
5 |
Multiphase flow measurement using gamma-based techniquesArubi, Isaac Marcus Tesi January 2011 (has links)
The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves. This has led oil companies to develop smaller/marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective soluti8ons of on-line continuous multiphase flow measurement. The pattern recognition approach for clamp-on multiphase measurement employed in this research study provides one means for meeting this need. Cont/d.
|
6 |
Development of a coupled wellbore-reservoir compositional simulator for damage prediction and remediationShirdel, Mahdy 01 October 2013 (has links)
During the production and transportation of oil and gas, flow assurance issues may occur due to the solid deposits that are formed and carried by the flowing fluid. Solid deposition may cause serious damage and possible failure to production equipment in the flow lines. The major flow assurance problems that are faced in the fields are concerned with asphaltene, wax and scale deposition, as well as hydrate formations. Hydrates, wax and asphaltene deposition are mostly addressed in deep-water environments, where fluid flows through a long path with a wide range of pressure and temperature variations (Hydrates are generated at high pressure and low temperature conditions). In fact, a large change in the thermodynamic condition of the fluid yields phase instability and triggers solid deposit formations. In contrast, scales are formed in aqueous phase when some incompatible ions are mixed. Among the different flow assurance issues in hydrocarbon reservoirs, asphaltenes are the most complicated one. In fact, the difference in the nature of these molecules with respect to other hydrocarbon components makes this distinction. Asphaltene molecules are the heaviest and the most polar compounds in the crude oils, being insoluble in light n-alkenes and readily soluble in aromatic solvents. Asphaltene is attached to similarly structured molecules, resins, to become stable in the crude oils. Changing the crude oil composition and increasing the light component fractions destabilize asphaltene molecules. For instance, in some field situations, CO₂ flooding for the purpose of enhanced oil recovery destabilizes asphaltene. Other potential parameters that promote asphaltene precipitation in the crude oil streams are significant pressure and temperature variation. In fact, in such situations the entrainment of solid particulates in the flowing fluid and deposition on different zones of the flow line yields serious operational challenges and an overall decrease in production efficiency. The loss of productivity leads to a large number of costly remediation work during a well life cycle. In some cases up to $5 Million per year is the estimated cost of removing the blockage plus the production losses during downtimes. Furthermore, some of the oil and gas fields may be left abandoned prematurely, because of the significance of the damage which may cause loss about $100 Million. In this dissertation, we developed a robust wellbore model which is coupled to our in-house developed compositional reservoir model (UTCOMP). The coupled wellbore/reservoir simulator can address flow restrictions in the wellbore as well as the near-wellbore area. This simulator can be a tool not only to diagnose the potential flow assurance problems in the developments of new fields, but also as a tool to study and design an optimum solution for the reservoir development with different types of flow assurance problems. In addition, the predictive capability of this simulator can prescribe a production schedule for the wells that can never survive from flow assurance problems. In our wellbore simulator, different numerical methods such as, semi-implicit, nearly implicit, and fully implicit schemes along with blackoil and Equation-of-State compositional models are considered. The Equation-of-State is used as state relations for updating the properties and the equilibrium calculation among all the phases (oil, gas, wax, asphaltene). To handle the aqueous phase reaction for possible scales formation in the wellbore a geochemical software package (PHREEQC) is coupled to our simulator as well. The governing equations for the wellbore/reservoir model comprise mass conservation of each phase and each component, momentum conservation of liquid, and gas phase, energy conservation of mixture of fluids and fugacity equations between three phases and wax or asphaltene. The governing equations are solved using finite difference discretization methods. Our simulation results show that scale deposition is mostly initiated from the bottom of the wellbore and near-wellbore where it can extend to the upper part of the well, asphaltene deposition can start in the middle of the well and the wax deposition begins in the colder part of the well near the wellhead. In addition, our simulation studies show that asphaltene deposition is significantly affected by CO₂ and the location of deposition is changed to the lower part of the well in the presence of CO₂. Finally, we applied the developed model for the mechanical remediation and prevention procedures and our simulation results reveal that there is a possibility to reduce the asphaltene deposition in the wellbore by adjusting the well operation condition. / text
|
7 |
Multiphase flow measurement using gamma-based techniquesArubi, Isaac Marcus Tesi 03 1900 (has links)
The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves. This has led oil companies to develop smaller/marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective soluti8ons of on-line continuous multiphase flow measurement. The pattern recognition approach for clamp-on multiphase measurement employed in this research study provides one means for meeting this need. Cont/d.
|
8 |
Two-Phase Flow Instability Induced by Flashing in Natural Circulation Systems: an Analytical ApproachAkshay Kumar Khandelwal (10725543) 05 May 2021 (has links)
<div>Many two-phase flow systems might undergo flow instabilities even if the system is adiabatic but operates near the saturation conditions, especially in vertical flow conditions. Such instabilities are caused by <i>flashing</i> of the fluid in flow. Flashing is a sudden phase change in the fluid caused when local saturation enthalpy falls below the fluid enthalpy and the excess energy is used as latent heat for gas generation.</div><div> In the current analysis, a mathematical model is presented for analysis of such instability analytically. The conservation equations have been obtained by statistical averaging in time and space. Then, the concerned system is divided into various regions based on flow conditions, and these averaged equations are used to describe the flow. For flashing-based instability, two parameters are derived from constitutive relationships for the fluid. These two parameters are <i>Flashing Boundary</i> and <i>Gas Generation due to Flashing</i>. These parameters provide for the closure of the mathematical model. Some simple models for flashing have been developed and discussed.</div><div> The mathematical model is then solved analytically for <i>Uniform Heat</i> and <i>Flat Model</i> for the heater and flashing region respectively. The solution is in terms of the characteristic equation which is used to predict the onset of instability caused by flashing. The results are then plotted on the Subcooling-Phase Change number plane. It is observed that inlet and outlet restrictions in the flow does <b>not</b> affect the onset of flashing induced instability as the flow rate is coupled with the pressure drop of the system. This is important as these restrictions play a major role in other two-phase flow instabilities such as <i>Density Wave Oscillations</i></div><div> Finally, the stability boundary in the stability plane is compared to experimental data present for flashing. The comparison was made with data of S. Shi, A. Dixit, and F. Inada. The stability boundary satisfactorily agrees with the experimental data thus corroborating the present mathematical model and analysis.</div>
|
9 |
[en] NUMERICAL PREDICTION OF TWO-PHASE FLOW IN PIPELINE WITH THE DRIFT-FLUX MODEL / [pt] PREVISÃO NUMÉRICA DE ESCOAMENTO BIFÁSICO EM TUBULAÇÕES UTILIZANDO O MODELO DE DESLIZAMENTOCARLOS EUGENIO CARCERONI PROVENZANO 28 September 2007 (has links)
[pt] Na produção de gás e petróleo em campos de águas profundas
são
comumente encontrados trechos verticais de dutos (risers)
na aproximação final
à plataforma. Nesta configuração, podem ocorrer
escoamentos bifásicos no
regime de golfadas severas (severe slug) que gera
alternância na produção da fase
gasosa e líquida. Esta alternância é caracterizada por
períodos de produção de gás
sem líquido seguido de altas taxas de produção de ambas as
fases. O regime
severo de golfadas é geralmente descrito em quatro fases:
formação da golfada,
produção da golfada, rompimento da golfada pela fase gás e
fluxo reverso do que
restou da fase líquida. Este regime induz o escoamento a
condições mais
extremas do que um outro regime, visto que resultam em um
aumento de pressão
no duto durante a formação da golfada e em um aumento na
taxa de produção
durante a expulsão da mesma. O presente trabalho consiste
da simulação
numérica do regime de golfadas severas para um trecho de
tubulação horizontal
seguido de outro vertical, assim como apresentar uma
análise de um regime
estatisticamente permanente. A previsão do escoamento é
obtida utilizando-se
uma formulação unidimensional baseada no modelo de Drift.
A freqüência das
golfadas é comparada com outros estudos numéricos da
literatura, obtendo-se
uma concordância bastante satisfatória. / [en] In the gas and oil offshore deep water production is usual
to find risers in
Production Unit final approach. Regarding to this
configuration, two-phase flows
can evolve to a severe slug regime that create gas and
liquid alternate production.
This cyclic behavior is characterized by periods of gas
production followed by
very high liquid and gas flow rates. The severe slug flow
regime is normally
described as occurring in four phases: slug formation,
slug production, blowout,
and liquid fallback. This flow regime introduces new
conditions that can be
found in other regimes because of the pressure increase
during the slug formation
and the large flow rates during the slug production. The
present work consists of
the numerical simulation of the severe slug flow regime
into a horizontal pipeline
section followed by a vertical section, as well as to
present an statistically steady
state analysis. The flow prediction is obtained through a
one-dimensional
formulation based on the Drift Flux Model. The slug
frequency is compared with
other numerical studies available in the literature, and a
very satisfactory
agreement is obtained.
|
10 |
Modelo de mistura aplicado para a previsão de Holdup e gradiente de pressão bifásico em duto anular de grande diâmetro / Drift-flux model applied to predict holdup and two-phase pressure gradient in large annular ductCarvalho, Sávider Conti 21 March 2013 (has links)
O escoamento bifásico é muito importante para vários ramos industriais. As misturas bifásicas podem escoar em diversas configurações, as quais são chamadas de padrões de escoamento, e que, ao longo dos anos, receberam diversas classificações. Neste trabalho foi estudado o padrão bolhas dispersas em duto anular. Os trabalhos sobre escoamento bifásico em geometria anular são mais escassos, especialmente quando se trata de dutos anulares de grande dimensão. Dentre os modelos existentes para a modelagem do escoamento bifásico, trabalhamos com o modelo de mistura (Drift Flux), pois, apesar das altas velocidades superficiais, o escoamento em bolhas não possui um comportamento homogêneo, já que a fase gasosa ainda escoa na região central e com uma velocidade maior do que a velocidade da mistura. Foi utilizado o modelo de mistura unidimensional para a modelagem do escoamento bifásico água-ar, pois, além de bastante preciso, é de baixo custo computacional e fácil implementação. Neste trabalho empregamos, a princípio, equações elaboradas para dutos circulares, as quais foram adaptadas para a geometria anular fazendo-se uso do conceito de diâmetro hidráulico. As equações foram implementadas no software Mathematica® e as previsões para o holdup e queda de pressão foram comparadas com dados experimentais próprios. O trabalho experimental foi realizado no laboratório de escoamentos multifásicos do Núcleo de Engenharia Térmica e de Fluidos (NETeF) da EESC-USP, o qual conta com uma instalação experimental em estado operacional para a simulação de escoamentos bifásicos vertical e inclinados em duto anular. Foram colhidas medidas de holdup e queda de pressão bifásica. A concordância entre os dados experimentais e as previsões foi muito satisfatória. / Two-phase flow is present in a wide range of industrial processes. Such flows occur in many geometrical configurations known as flow patterns. In this work is presented a study about bubbly flow in annular duct. Works on two-phase flow in large annular geometry are very scarce. Among the existing models for modeling two-phase flow we chose the drift flux model because the bubbly flow does not behave as a homogeneous mixture, despite of the high superficial velocities, since the gas phase flows faster in the core region in comparison with the mixture velocity. The onedimensional drift flux model besides to be accurate is of low computational cost and easy implementation. The goal of this work is to analyze the prediction of holdup and pressure drop in annular ducts of large diameter. The set of equations used was adapted from those of circular ducts by using the hydraulic diameter concept. The equations were implemented in Mathematica software and holdup and pressure drop prediction were compared with experimental data taken in the experimental facility of the Thermal-fluids Engineering Laboratory of EESC-USP. It was collected measure of holdup and pressure drop. The agreement between experimental data and model predictions is encouraging.
|
Page generated in 0.0513 seconds