• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 3
  • 2
  • 1
  • Tagged with
  • 37
  • 10
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

RISK PARAMETERS AND ASSESSMENT OF DIETARY dsRNA EXPOSURE IN <em>FOLSOMIA CANDIDA</em>

Noland, Jeffrey Edward 01 January 2017 (has links)
Assessing the risk of transgenic crop products is essential when determining the safety of a crop for deregulation and commercialization. The Organization of Economic and Cooperative Development (OECD), International Standards Organization (ISO), and governmental regulatory agencies require a battery of tests to demonstrate the safety of a GM product against several surrogate species of organisms that perform various ecosystem services. Assays are performed using toxicology methods established for pesticides. These methods have been applied to testing the safety, specificity and fate of Bacillus thuringiensis (Bt) Cry protein toxins engineered into crop plants and information exists on the effects on non-target organisms (NTOs). Toxicology assays are typically evaluated through a tier-based approach, where, if no or negligible risk via oral toxicity or phenotypic changes then a risk decision can be made. Long term exposure studies are often performed after commercial release of the crop occurs and provide a more in depth understanding of environmental impacts. Risk analyses are currently being performed on the product of the next generation of GM crops that express dsRNAs against Western Corn Rootworm. This thesis provides another such study, primarily focused on Folsomia candida, a microarthropod that is the subject of numerous toxicological studies. I describe the development of dsRNA stability assays, which indicate stability of dsRNA across assay time, both with and without F. candida. When exposed to dsRNA levels several orders of magnitude higher that what would be encountered in the environment, F. candida is not negatively impacted as seen through gene expression and life history trait analysis.
12

RNA interference v myších oocytech a tělních buňkách / RNA interference in mouse oocytes and somatic cells

Táborská, Eliška January 2021 (has links)
RNA interference (RNAi) is a pathway, which employs Dicer to process long double stranded RNAs (dsRNA) from endogenous or exogenous sources into short interfering RNAs (siRNA). siRNAs are loaded onto Argonaute proteins to mediate sequence-specific post-transcriptional RNA targeting resulting in regulation of protein-coding genes and retrotransposons or antiviral immune response. Another small RNA pathway - PIWI-associated RNA (piRNA) pathway is suppressing retrotransposons in the germline. In mice, canonical RNAi pathway activity is negligible in somatic cells where a full-length Dicer produces gene-regulatory microRNAs (miRNA) but RNAi is highly active in oocytes, which express a truncated oocyte-specific Dicer isoform (DicerO ). DicerO lacks an N-terminal DExD helicase domain and has higher cleavage activity of long dsRNAs. Deletion of oocyte specific DicerO promoter leads to transcriptome aberrations, which include upregulation of putative RNAi targets and MT retrotransposons and, consequently, to meiotic spindle defects and female sterility. In contrast, the piRNA pathway is non-essential in mouse oocytes, potentially because of overlapping functions of RNAi. The PhD thesis aims to understand biological significance of mammalian endogenous RNAi and to explore consequences of re-activated RNAi...
13

REGULATION OF dsRNA-INDUCED TRANSCRIPTION BY NFêB AND IRF-3 THROUGH TLR3 AND RIG-I

Elco, Christopher 25 June 2007 (has links)
No description available.
14

Effect of dsRNA-containing and dsRNA-free hypovirulent isolates of Fusarium oxysporum on severity of Fusarium seedling disease of Essex soybean

Kilic, Ozlem III 08 August 1997 (has links)
Sixty-six isolates of <I>F. oxysporum</I> and <I>F. solani</I> were recovered from healthy and necrotic Essex soybean seedlings grown in naturally infested soil. These were tested for pathogenicity at 20 C and -0.01 MPa water potential in artificially infested, autoclaved field soil. Highly pathogenic, moderately pathogenic, and hypovirulent isolates of both species were identified. Fifty-seven <I>F. oxysporum</I> and nine <I>F. solani</I> isolates were tested for the presence of dsRNA. The presence of dsRNA was not associated with hypovirulence in <I>F. oxysporum</I> since some hypovirulent isolates contained dsRNA while other hypovirulent isolates did not. Furthermore, of six dsRNA-containing <I>F. oxysporum</I> isolates, three were hypovirulent, two were moderately pathogenic, and one isolate was highly pathogenic. Four segments of dsRNA, with sizes of 4.0, 3.1, 2.7, and 2.2 kb, were detected in extracts of all six <I>F. oxysporum</I> isolates. No morphological differences were found between dsRNA-containing and dsRNA-free <I>F. oxysporum</I> isolates. Attempts to cure dsRNA-containing hypovirulent <I>F. oxysporum</I> isolates, either by single-sporing of isolates or by using a range of concentrations of cycloheximide, were not successful. No dsRNA was found in any of the F. solani isolates tested. Pythium ultimum, an associate in Essex seedling disease, was isolated from water-soaked lesions and interfered with evaluations of disease caused by the Fusarium spp. Metalaxyl was used to control P. ultimum and had no apparent effect on symptoms associated with <I>F. oxysporum</I> and <I>F. solani</I> in field soil. Prior inoculation of Essex soybean seeds with conidia of dsRNA-free hypovirulent <I>F. oxysporum</I> isolates, plus metalaxyl seed treatment, significantly (p<0.05) reduced disease severity on both cotyledons and hypocotyls and increased the rate of seedling emergence in field soil, compared to the control plants treated with metalaxyl alone or not treated with metalaxyl. No significant (p>0.05) differences were found between dsRNA-containing and dsRNA-free hypovirulent <I>F. oxysporum</I> isolates in their effects on the reduction of disease severity. A mixture of two hypovirulent <I>F. oxysporum</I> isolates was significantly (p<0.05) more effective than single hypovirulent <I>F. oxysporum</I> isolates in increasing the rate of seedling emergence. Symptoms associated with P. ultimum were not affected by the prior inoculation of seeds with individual hypovirulent <I>F. oxysporum</I> isolates. / Master of Science
15

Study of Innate Immune Response Components in West Nile Virus Infected Cells

Elbahesh, Husni M 07 May 2011 (has links)
Two cellular innate responses, the dsRNA protein kinase (PKR) pathway and the 2'-5' oligoadenylate synthetase (OAS)/RNase L pathway, are activated by dsRNAs produced by viruses and reduce translation of host and viral mRNAs. PKR activation results in eIF2a phosphorylation. As a consequence of eIF2a phosphorylation, stress granules (SGs) are formed by the aggregation of stalled SG proteins with pre-initiation complexes and mRNA. West Nile virus (WNV) infections do not induce eIF2a phosphorylation despite upregulation of PKR mRNA and protein suggesting an active suppression of PKR activation. Assessment of the mechanism of suppression of PKR activation in WNV-infected cells indicated that WNV infections do not induce PKR phosphorylation so that active suppression is not required. In contrast to infections with "natural" strains of WNV, infections with the chimeric W956 infectious clone (IC) virus efficiently induce SGs in infected cells. After two serial passages, the IC virus generated a mutant (IC-P) that does not induce SGs efficiently but does induce the formation of NS3 granules that persist throughout the infection. This mutant was characterized. 2'-5' oligoadenylate synthetases (OAS) are activated by viral dsRNA to produce 2-5A oligos that activate RNase L to digest viral and cellular RNAs. Resistance to flavivirus-induced disease in mice is conferred by the full-length 2'-5' oligoadenylate synthetase 1b (Oas1b) protein. Oas1b is an inactive synthetase that is able to suppress the in vitro synthetase activity of the active synthetase Oas1a. The ability of Oas1b to inhibit Oas1a synthetase activity in vivo and to form a heteromeric complex with Oas1a was investigated. Oas1b suppressed 2-5A production in vivo. Oas1a and Oas1b overexpressed in mammalian cells co-immunoprecipitated indicating the formation of heteromeric complexes by these proteins. Unlike mice, humans encode a single OAS1 gene that generates alternatively spliced transcripts encoding different isoforms. Synthetase activity has previously been reported for only three of the isoforms. The in vitro synthetase activity of additional OAS1 isoforms was analyzed. All tested isoforms synthesized higher order 2-5A oligos. However, p44A only produced 2-5A dimers which inhibit RNase L.
16

The antitumor activity of tumor-targeted RNA replicase-based plasmid DNA

Rodriguez, Bertha L. 04 March 2014 (has links)
Over the past several decades, there have been numerous attempts to utilize synthetic dsRNA to control tumor growth in animal models and clinical trials. Recently, it has become clear that intracellular dsRNA is more effective than extracellular dsRNA in promoting apoptosis and orchestrating adaptive immune response. To overcome the difficulty in delivering a large dose of synthetic dsRNA into tumors, while avoiding systemic toxicity we propose to deliver a RNA replicase-based plasmid DNA, hypothesizing that the dsRNA generated by the replicase-based plasmid in tumor cells will inhibit tumor growth. We evaluated the anti-tumor activity of a plasmid (pSIN-beta) that encodes the sindbis RNA replicase genes in mice with model tumors (TC-1 lung cancer cells or B16 melanoma cells) and compared it to a traditional pCMV-beta plasmid. In cell culture, transfection of tumor cells with pSIN-beta generated dsRNA. In mice with model tumors, pSIN-beta more effectively inhibited tumor growth than pCMV-beta, and in some cases, eradicated the tumors. RNA replicase-based plasmid may be exploited to generate intracellular dsRNA to control tumor growth. The feasibility of further improving the antitumor activity of the RNA replicase-based plasmid by targeting it into tumors cells was also evaluated. An epidermal growth factor (EGF)-conjugated, PEGylated cationic liposome was developed to deliver the RNA replicase-based plasmid, pSIN-beta, into EGFR-over-expressing human breast cancer cells (MDA-MB-468) in vitro and in vivo. Delivery of the pSIN-beta using the EGF receptor-targeted liposome more effectively controlled the growth of MDA-MB-468 tumors in mice than using un-targeted liposome. Finally the potential of further improving the antitumor activity of the pSIN-beta plasmid by incorporating interleukin-2 (IL2) gene into the plasmid was investigated. The resultant pSIN-IL2 plasmid was delivered to mouse melanoma cells that over-express the sigma receptor. The pSIN-IL2 plasmid was more effective at controlling the growth of B16 melanoma in mice when complexed with sigma receptor targeted AA-PEG-liposomes than with the untargeted liposomes. Importantly, the pSIN-IL2 plasmid was more effective than pSIN-beta plasmid at controlling the growth of B16 melanoma in mice, and B16-bearing mice that were treated with pSIN-IL2 had an elevated number of activated CD4+, CD8+, and natural killer cells, compared to those treated with pSIN-beta. / text
17

Long non-coding RNA-based mechanisms for the inhibition of cell growth and development by 5 - Fluorouracil / Mécanismes à base de ARNlnc pour l'inhibition de la croissance cellulaire et le développement par 5 – fluorouracil

Xie, Bingning 03 November 2016 (has links)
Les ARNm codent pour les protéines, tandis qu'un grand nombre d'ARNs nommés longues ARNs non codants (ARNlnc) ne sont pas traduites en protéines. Les deux types d’ARNs existent en isoforms qui se distinguent à cause de l’épissage alternatif. Certains des ARNlnc jouent des rôles importants dans la croissance et différentiation cellulaire. Cependant, leurs fonctions dans la cytotoxicité de la chimiothérapie anti-cancéreuse médicamenteuse utilisant le 5-fluorouracile (5-FU) sont encore inconnues. Pendant mes travaux j'ai trouvé que le traitement par le 5-FU cause l’accumulation des ARNlnc. Ce phénomène est parfois, sous forme d’ARN double brin (ARNds) formé par une paire de transcrits chevauchant, corrélé négativement avec le niveau de la protéine codée par l'ARNm. Cette inhibition potentielle de la traduction des régulateurs du cycle cellulaire clés et les gènes essentiels en formant des l'ARNds peut éventuellement empêcher la progression du cycle cellulaire. Nos analyses prometteuses devraient inspirer des études approfondies des ARNlnc dans la cytotoxicité du 5-FU chez la levure et l’homme afin d’'améliorer la chimiothérapie. J'ai trouvé que la surexpression de RRP6, peut conduire à une résistance accrue au traitement par le 5-FU. Je démontre ensuite que l’ARNlnc MUT1312 forme des ARNds avec RRP6 qui sont négativement corrélés avec le niveau de la protéine Rrp6. Par ailleurs, la surexpression de MUT1312 pendant la mitose et associé avec une diminution d’Rrp6. Ainsi, mon étude suggère que MUT1312 soit impliqué dans la régulation de Rrp6 pendant la differentiation cellulaire. Mes recherches de MUT477/SWI4 indiquent la function importante de la méiose induite à long ARN non codantes en tant que forme d'ARN double brin potentiellement réguler la traduction. J'ai trouvé que SUT200 pourrait inhiber la transcription de CDC6 durant la méiose par read-through. Un cas comparable est MUT1465 et CLN2. J’ai fait un criblage in silico pour trouver des facteurs de transcription qui activent des MUTs durant la méiose. J’ai trouvé que la plupart des MUTs sont induites par Ndt80. MUT1465 est parmi eux : il pourrait être induite par Ndt80 ce qui inhiberait l’expression de CLN2 après l’initiation de la méiose. J’ai trouvé que la répression de certains MUTs par le complexe Ume6/Rpd3 en mitose est différemment régulée entre JHY222 et SK1. MUT100 qui ne possède pas l'élément USR1 fixé par Ume6, et qui est donc une cible indirecte, est déréprimé dans JHY22 ume6 mais pas dans SK1 ume6. Pour la régulation de l'étude de isoforme méiose, Nous avons trouvé que le complexe histone déacétylase Rpd3/Sin3/Ume6, empêche également l'induction de l'isoforme longue de BOI1 dans la mitose par liaison directe de liaison Ume6 à sa cible de URS1. Orc1 est importante pour la réplication de l'ADN. J’ai démontré que mORC1 est une cible directe de l'activateur Ndt80 et que son motif de fixation (MSE) est nécessaire pour l'induction de l’isoforme mORC1 et du gene méiotique SMA2 transcrit de façon divergente. J’ai trouvé qu'une souche incapable d’induire mORC1, contient des niveaux anormalement élevés d’Orc1 pendant la gamétogenèse, ce qui corréle mORC1 avec la baisse de la protéine Orc1. En conclusion, mes études au cours du doctorat révèlent des nouvelles cibles et ainsi offrent des nouvelles perspectives de l’amélioration de la chimiothérapie par le 5-FU. Les mécanismes incluent la formation d'un ARN double brin avec son ARNm anti-sens pour potentiellement inhiber la traduction de l'ARNm, et inhibition en aval de l'ARNm par transcription read-through d’une ARNlnc. Mon travail a également révélé un mécanisme de régulation des ARNlnc et les isoforms d’ARN pendent la croissance et la différentiation cellulaire. / RNAs are molecules with important functions in diverse cellular processes. mRNAs encode proteins, while a large number of RNAs called long noncoding RNAs (lncRNAs) are not translated into proteins. Both types of RNAs exist in various isoforms due to alternative splicing.Some of lncRNA play important roles in cell growth and differentiation. However, their functions in the cytotoxicity of the drug anticancer chemotherapy using 5-fluorouracil (5-FU) are still unknown. During my research I found that treatment with 5-FU causes accumulation of lncRNA. Acuumulated antisense lncRNA form double stranded RNA with the mRNAs , negatively correlated with the level of the protein encoded by the mRNA. This potential inhibition of translation of key cell cycle regulators and essential genes by forming dsRNA may possibly prevent the progression of the cell cycle. My results suggest that lncRNA are likely to play an important role in the cytotoxicity of 5-FU. Our promising testing should inspire in-depth studies of lncRNA in the cytotoxicity of 5-FU in yeast and humans to improve chemotherapy.Rrp6 is a 3'-5 'exoribonuclease, which plays an important role in the regulation and modification of rRNA, mRNA and lncRNA. I found that overexpression of RRP6, the homologue of the yeast EXOSC10 gene in mammals, can lead to increased resistance to treatment with 5-FU. I found that the lncRNA MUT1312 form dsRNA with RRP6 that are negatively correlated with the level of Rrp6 protein. Furthermore, overexpression of MUT1312 during mitosis and associated with a decrease of Rrp6. Thus, my study suggests that MUT1312 may involved in the regulation of Rrp6 during cell differentiation. I further explored the function of the double-stranded RNA in meiosis. My research about SWI4/MUT477 indicates the important function of meiosis induced long noncoding RNA as a form of double-stranded RNA potentially regulate translation. Another aspect of the function of lncRNA is to regulate the transcription of downstream mRNA. I found SUT200 could inhibit transcription of CDC6 during meiosis by read-through. A similar case is CLN2/MUT1465. I did an in silico screening to find transcription factors that activate MUTs during meiosis. I found that most MUTs are induced by Ndt80. MUT1465 is among them: it could be induced by Ndt80 which inhibit the expression of CLN2 after initiation of meiosis. I found that repression of certain MUTs by the Ume6 / Rpd3 complex in mitosis is regulated differently between JHY222 and SK1. MUT100 which does not have the Ume6 binding site URS1 element, and is therefore an indirect target is derepressed in JHY22 ume6 but not in SK1 ume6. For the study about regulation of meiosis isoform, we have found that the histone deacetylase complex Rpd3 / Sin3 / Ume6 prevents the induction of long isoform BOI1 in mitosis by direct binding Ume6 binding to its target URS1.Orc1 is important for DNA replication. I have demonstrated that mORC1 is a direct target of the Ndt80 activator and its binding motif (MSE) is required for induction of isoform mORC1 and meiotic gene SMA2 divergently transcribed. I found that a strain incapable of inducing mORC1 contains abnormally high levels of Orc1 during gametogenesis, which correlates with mORC1 declining Orc1 protein. Since eukaryotic genes often encode multiple transcripts with 5'-UTR of variable length, the findings are likely relevant to gene expression during development and disease in higher eukaryotes. In conclusion, my studies during PhD reveal new targets and thus offer new prospects for improving chemotherapy with 5-FU. Mechanisms include (1) the formation of a double strand with its antisense mRNAs to potentially inhibit translation of mRNA, and (2) downstream inhibition of mRNA transcription read-through of a lncRNA. My work also revealed a lncRNA regulatory mechanism and RNA isoforms dangling growth and cell differentiation.
18

RNA interference: Process and Application to Pest Control

Mehlhorn, Sonja Gabriele 13 July 2020 (has links)
No description available.
19

Characterization of Genes Required for Preimplantation Embryo Development

Maserati, Marc P, Jr 01 January 2013 (has links) (PDF)
Preimplantation embryo development in the mouse is a time of rapid cellular morphological and molecular changes leading to embryo implantation for the generation of offspring. The Mager lab studies these events occuring between fertilization and implantation in order to better understand the initial events which set the stage for all future aspects of development. The result of this research impacts many scientific disciplines including in-vitro based means of embryo culture, establishment of epigenetic marks, differentiation and cellular reprogramming and can be used in translational research for the improvement of in-vitro culture techniques and develop novel therapies such as cell replacement in the case of macular degeneration (Bin, L., 2009). Through the use of in-vitro embryo culture, RNA interference (RNAi) approaches and daily observations, gene function required in preimplantation embryo development can be determined. In the initial published body of work evaluating gene knockdown using our RNAi approach (Maserati M 2011), WDR74 was characterized in preimplantation embryo development. We now understand that WDR74 is implicated in RNA production and/or stability as gene knockdown at the 1 cell stage significantly depletes mRNA within the embryo by the morula stage. Furthermore, double knockdown of Trp53 and Wdr74 results in a partial rescue of blastocyst formation suggesting p53 mediated apoptosis in the failure to make a blastocyst phenotype. The initial characterization of 4 RNA processing genes (SF3b14, SF3b1/SAP155, Rpl7l1 and Rrp7a) required for blastocyst formation was later evaluated. The results of this work has been submitted for publication and will be published soon in the journal Zygote. SF3b14 and SF3b1, identified as being part of the splicesome complex, disproportionally contributes to gene transcription of those genes containing more than 1 exon verifying a role in RNA splicing. Rpl7l1, identified by GO terms as a possible ribosomal gene, was found to be present in the cytoplasm and, surprisingly, in the nucleus. It is surmised this gene influences polymerase 2 activity as Rpl7l1 gene knockdown embryos demonstrate reduced active polymerase 2 activity at the morula stage. Rrp7a was identified as being critical in blastocyst formation and is present in the cytoplasm while excluded from the nucleus. Based on location and GO terms, this suggests a role in translation. Taken together, these 4 genes act in 3 different ways impacting RNA production, splicing or translation promoting blastocyst formation in the mouse. The final gene evaluated in this work was Bcl-6 corepressor (Bcor). As opposed to our previous work with RNA processing factors, this gene knockdown does not result in a failure to make a blastocyst. Bcor knockdown increases the rate of physiologically normal blastocysts in both murine and bovine models. Although further characterization must be done, temporary Bcor gene knockdown might be a useful improvement of in-vitro embryo culture systems including murine, bovine, equine and possibly even human. This manuscript is divided into 4 chapters, the first of which is a review of preimplantation embryo development. This covers selected and relevant events between fertilization and just before implantation of the embryo into the uterus. I mainly focus on events after fertilization and the necessary changes required for zygotic genome transcription and lineage specification. The second chapter characterizes WDR74, a gene we identified as critical in the formation of a blastocyst in a reverse genetic screen. As state before, we assess WDR74 function with the developing embryo and conclude the protein plays a role in RNA production and/or stability of RNA transcripts. We also test to rescue blastocyst formation in WDR74 knockdown embryos in an attempt to further evaluate WDR74 function. We continue the characterization of genes whose temporary reduction causes the failure of blastocyst formation in the third chapter. Here we report on four additional RNA processing genes in a body of work which has been published in the journal Zygote. Since these genes contained similar GO terms, we assumed they may all function in a similar way so they were assayed together as a group. As function of these genes were unknown, we determined protein localization within the cell, function in RNA splicing, alternative splicing and to determine if the failure to make a blastocyst is due to lineage specification. In the final chapter, BCOR gene expression is characterized in preimplantation embryo development as in the former 2 chapters. However, the result of this gene knockdown does not lead to the failure to make a blastocyst, rather this improves the number of blastocysts formed during the correct physiological time; the same time that blastocysts form invivo. Undoubtedly, this could lead to possible commercial applications which are reviewed along with the preliminary data we have been able to collect thus far. Specifically, the continuation of the BCOR gene knockdown research in preimplantation embryo development is pitched in the form of academic and international business collaboration with InvitroBrasil for the production of cloned bovine, equine and ICSI in equine.
20

Regulation of antiviral responses by RIG-I dissociation from dsRNA / dsRNAからのRIG-I解離による抗ウイルス反応の調節

Im, Jung Hyun 24 November 2023 (has links)
京都大学 / 新制・課程博士 / 博士(生命科学) / 甲第24984号 / 生博第513号 / 新制||生||68(附属図書館) / 京都大学大学院生命科学研究科統合生命科学専攻 / (主査)教授 野田 岳志, 教授 朝長 啓造, 教授 今吉 格 / 学位規則第4条第1項該当 / Doctor of Philosophy in Life Sciences / Kyoto University / DFAM

Page generated in 0.0275 seconds