• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 217
  • 121
  • 87
  • 24
  • 18
  • 15
  • 13
  • 10
  • 9
  • 8
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 880
  • 255
  • 182
  • 127
  • 112
  • 112
  • 102
  • 98
  • 86
  • 79
  • 65
  • 64
  • 60
  • 59
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Factors Affecting The Durability Of Basic Igneous Rocks As High Quality Base Course Aggregates, An Investigation Of The Karoo Dolerite Suite Of South Africa

Leyland, Robert Clive January 2014 (has links)
Covering approximately (57%) of the country's surface area the main basin of the geology of the Karoo Supergroup in South Africa has an important influence on the materials used in the construction of transport infrastructure in South Africa. The Karoo Dolerite Suite often serves as the only competent material in this otherwise sedimentary basin but on numerous occasions rapid premature failures of pavements constructed with Karoo Dolerite base courses have been attributed to the poor durability of these materials. The research presented here attempts to determine if the cause of such rapid failures can be attributed to dolerite durability deficiencies and if so if the durability of the material can be predicted using the current specifications to which these materials are required to conform with. The methodology followed was to perform comprehensive material investigations on selected pavement sections where Karoo Dolerite had been used as a base course aggregate. Eight suitable sites, ranging in age from two months to 10 years, were selected and comparative testing performed on samples of material obtained from the source quarries and pavement layers at each. Three of these sites experienced rapid failure that was suspected to be due to base course aggregate degradation. The tests performed included those specified by South African standards and a selection of new tests derived from published literature on alternative tests and proposed basic igneous rock degradation models. Well established tests were completed with relative ease while newer tests and newly proposed tests required additional development. The materials from at least two poor performance sites was shown to have undergone various degrees of degradation after quarrying which manifested itself primarily as a loss in resistance to attrition and abrasion forces. The variability in the inherent resistance of the material to these forces was also noted to have contributed to the poor performance of at least two sites. It is therefore proven that degradation of Karoo Dolerites after quarrying can occur and contribute to the poor performance of pavements but also that the variability in a source quarry can result in poor performance without material degradation. The prediction of material durability is possible but requires numerous tests to be performed on representative samples, particularly to identify variations in material properties. Petrographic properties that result in variable material properties and a susceptibility to further alteration included high degrees of deuteric and metasomatic alteration of primary minerals, especially the fine matrix minerals. It has been shown that the accurate quantification of such alteration is not feasible using easily available analysis techniques and therefore that no specifications can be based thereon. The current material specifications have been shown to not accurately predict the durability of Karoo Dolerite, primarily due to the inability to activate the mechanism by which material physical degradation occurs, namely the expansion of clay minerals within the aggregate. The only exception was the water absorption test performed on core samples, which was able to identify poor materials. Tests that were able to predict the durability included the modified versions of previously specified tests (e.g. ethylene glycol soaked aggregate impact value and ethylene glycol soaked modified durability mill index) and newly proposed testing methods (e.g. modified ethylene glycol durability index and shear wave velocity). Preliminary specifications for these have been proposed. The initial development of an aggregate expansion test has also shown a strong ability to predict Karoo Dolerite durability and is proposed for further development. Ultimately the use of poor durability Karoo Dolerite results in two changes in the material properties. The first effect is the production of more fines during construction, which can result in an unsuitable amount of fines (as identified by a low coarse sand ratio). The second effect is an increase in plasticity index and linear shrinkage of the material<0.425mm to levels considered marginal based on the current specifications. The shear strength of a Karoo Dolerite base course layer has been shown to be sensitive to such changes in plasticity index and linear shrinkage and the reduction of the current specification limit to ensure materials are non-plastic and/or non-expansive may therefore be justified.
92

Durability of Steel Bridge Metallic Coating Systems based on Combined Cyclic Corrosion Tests

Kitane, Y., Shimizu, Y., Itoh, Y. January 2008 (has links)
No description available.
93

Konstrukcinių veiksnių įtaka srieginių jungčių elementų deformavimui ir ilgaamžiškumui / Influence of structural factors upon deformation and durability of threaded connections

Selivonec, Jelena 18 December 2006 (has links)
Research area and topicality of the work. Large equipment such as pressure vessels, mining equipment, heat exchangers, steam generators and other structures are provided with bolted closures for the purpose of in-service inspection and maintenance of internal components. The serious stress concentrations existing at the thread roots often cause danger of low cycle fatigue failure of the connectors. The load distribution along the threads has a direct influence on the stress at the thread roots. Load distribution in thread is so very unequal that some turns may be over the plastic yield limit but other turns are only in an elastic state. It is very useful to find the load distribution laws within threaded connection for elasto-plastic state of turns because it gives primary data for predicting low cycle durability of whole connection. Up to now low cycle fatigue calculating methods directly do not use data of the load distribution in thread. Instead of it the influence of some structural features to the low cycle durability somewhere approximately are evaluated by constant factors. That is insufficient because many structural parameters of threaded connections which influence to load distribution are designed in wide range of dimensions. Trustworthy way for more exact calculation of the stress at the thread roots is direct use of load distribution data. It is unavoidable when in order to increase thread connections fatigue life advanced techniques for improvement of load... [to full text]
94

Development of Wood Flour-Recycled Polymer Composite Panels As Building Materials

Adhikary, Kamal Babu January 2008 (has links)
Wood plastic composites (WPCs) were made using matrices of recycled high-density polyethylene (rHDPE) and polypropylene (rPP) with sawdust (Pinus radiata) as filler. Corresponding WPCs were also made using virgin plastics (HDPE and PP) for comparison with the recycled plastic based composites. WPCs were made through melt compounding and hot-press moulding with varying formulations based on the plastic type (HDPE and PP), plastic form (recycled and virgin), wood flour content and addition of coupling agent. The dimensional stability and mechanical properties of WPCs were investigated. Durability performances of these WPCs were studied separately, by exposing to accelerated freeze-thaw (FT) cycles and ultraviolet (UV) radiation. The property degradation and colour changes of the weathered composites were also examined. Dimensional stability and flexural properties of WPCs were further investigated by incorporation of nanoclays in the composite formulation. To understand the changes in WPCs stability and durability performance, microstructure and thermal properties of the composites were examined. Two mathematical models were developed in this work, one model to simulate the moisture movement through the composites in long-term water immersion and the other model to predict the temperature profile in the composites during hot-press moulding. Both rHDPE and rPP matrix based composites exhibited excellent dimensional stability and mechanical properties, which were comparable to those made from virgin plastics. Incorporation of maleated polypropylene (MAPP) coupling agent in composite formulation improved the stability and the mechanical properties. The incorporation of 3 wt. % MAPP coupling agent to WPCs showed an increase in tensile strength by 60% and 35 %, respectively, for the rHDPE based and rPP based composites with 50 wt. % wood flour. Scanning electron microscopy (SEM) images of the fractured surfaces of WPCs confirmed that the MAPP coupling improved the interfacial bonding between the plastic and the wood filler for both series of composites. Long-term water immersion tests showed that the water transport mechanism within the WPCs follows the kinetics of Fickian diffusion. Dimensional stability and flexural properties of the WPC were degraded after 12 accelerated FT cycles as well as 2000 h of UV weathering for both recycled and virgin HDPE and PP based composites. However, the MAPP coupled composites had improved stability and flexural property degradation. The surface of the weathered composites experienced a colour change, which increased with the exposure time. The MAPP coupled composites exhibited less colour change as compared to non-coupled composites. Regarding the effect of the plastic type, the PP based composites experienced higher colour change than those based on HDPE. With weathering exposure, flexural strength and stiffness of the WPCs were decreased, but elongation at break was increased regardless of plastic type and wood flour content. MAPP coupled rPP and rHDPE based UV weathered WPCs lowered the degradation of stiffness by 50% and 75%, respectively compared to non-coupled WPCs. SEM images of the fractured surfaces of FT and UV weathered WPCs confirmed a decrease in the interfacial bonding between the wood flour and matrix. Thermal properties of weathered composites changed with weathering, but the extent of the changes depended on WPCs formulation and matrix type. From the experimental studies on nanoclay-filled rHDPE composites, it is found that stability, flexural properties of WPCs could be improved with an appropriate combination of coupling agent, and nanoclay contents processed by melt blending. Incorporation of 1-5 wt. % nanoclay in the maleated polyethylene (MAPE) coupled wood plastic composite improved the dimensional stability and flexural properties. The thermal properties changed with the addition of nanoclay and MAPE in WPCs. In this work, a hot press-moulding model was proposed based on the one-dimensional transient heat conduction to predict the temperature profile of the WPCs during hot pressing cycle. The results from this work clearly show that rHDPE and rPP can be successfully used to produce stable and strong WPCs, which properties and performances are similar to or comparable to composites made of wood and virgin plastics. Therefore, WPCs based on recycled PP and HDPE matrix could have potential to use as construction materials.
95

DEVELOPMENT OF A CONSTITUTIVE MODEL OF COMPACTED SHALES AND DETERMINATION OF THE EFFECT OF WEATHERING ON ITS PARAMETERS

Gomez-Gutierrez, Isabel Cristina 01 January 2013 (has links)
Compacted shales cause problems because they tend to degrade with time due to weathering. Degradation results in the shale deteriorating from a hard rock-like material to a soft fine-grained soil mass with lower shear strength and high deformability. Consequently, common problems that occur in embankments constructed with compacted shales include settlement and instabilities. Therefore, accelerating weathering prior to compaction by wetting and breaking down the shales before placement can reduce the deterioration during the service life of the construction. Extensive laboratory testing was performed in order to characterize the mechanical behavior of compacted shales. Critical State theory is a clever framework that describes the mechanical behavior of soils with a simple system of equations that explains all the aspects of compression and shear of soils. NorSand is a model constructed in the framework of the Critical State theory that decouples the yield loci from the normally consolidated line. This characteristic made this model suitable for compacted shales. Also, empirical evidence showed that the plastic behavior of compacted shales is controlled by a Nova type flow rule that is a function of the mineralogical characteristics of the shales. This finding has implications in the shape of the yield loci and the hardening rule.
96

Development of a Computer-Aided Accelerated Durability Testing Method for Ground Vehicle Components

Shafiullah, A. K. M. 03 April 2012 (has links)
Presently in ground vehicle industries, conducting durability tests with a high acceleration factor have become increasingly demanding for the less time and cost involvement. In the previous work, to accelerate the field test, the standard ‘test tailoring’ approach has been modified due to the requirement of high acceleration factors and the limitations of testing implementation. In this study, a computer-aided testing method is developed for the validation of this modified approach. Hence, a new test-piece has been designed by a conjugative approach involving the finite element technique and fatigue analysis. Afterwards, the accelerated durability loading profiles synthesized via the modified approach have been applied on the designed test-piece and the fatigue life has been simulated to verify the effectiveness of those loading profiles. Simulation results show that loading profiles with an acceleration factor up to 330 can be successfully generated with an accuracy of 95% by this modified approach.
97

Events identification using Box-Jenkins methodology with application to accelerated durability tests of ground vehicles

Sarkar, Mostofa Ali 20 September 2012 (has links)
Durability tests are important to ensure the safety and reliability of a ground vehicle and involve frequently driving a vehicle through a series of events that simulate different road conditions or obstacles encountered during actual driving. Since durability tests are costly in-terms of time and money, accelerated durability lab tests can be used to spot failures before actual road tests. Signals of different events of the actual durability road tests generate three continuous time series data, that can be used to conduct accelerated durability lab tests. The actual analysis of these time series is very challenging because they are (i) of high frequency (ii) very noisy and (iii) inconsistent. The purpose of this study was to identify the patterns of signals from the noisy and inconsistent time series data collected from the field tests. The Box-Jenkins methodology was used to identify models corresponding to different events. Due to complex structures of the real data, ARMA modelling was considered after testing stationarity of the given time series. While the time series data in vertical direction was used to identify the first three events, the time series in vertical, longitudinal and lateral directions were used to identify other four events.
98

SiCディーゼル微粒子フィルタの耐久性能

Yamamoto, Kazuhiro, Tsuneyoshi, Koji, 山本, 和弘, 常吉, 孝治 07 1900 (has links)
No description available.
99

Development of a Computer-Aided Accelerated Durability Testing Method for Ground Vehicle Components

Shafiullah, A. K. M. 03 April 2012 (has links)
Presently in ground vehicle industries, conducting durability tests with a high acceleration factor have become increasingly demanding for the less time and cost involvement. In the previous work, to accelerate the field test, the standard ‘test tailoring’ approach has been modified due to the requirement of high acceleration factors and the limitations of testing implementation. In this study, a computer-aided testing method is developed for the validation of this modified approach. Hence, a new test-piece has been designed by a conjugative approach involving the finite element technique and fatigue analysis. Afterwards, the accelerated durability loading profiles synthesized via the modified approach have been applied on the designed test-piece and the fatigue life has been simulated to verify the effectiveness of those loading profiles. Simulation results show that loading profiles with an acceleration factor up to 330 can be successfully generated with an accuracy of 95% by this modified approach.
100

Events identification using Box-Jenkins methodology with application to accelerated durability tests of ground vehicles

Sarkar, Mostofa Ali 20 September 2012 (has links)
Durability tests are important to ensure the safety and reliability of a ground vehicle and involve frequently driving a vehicle through a series of events that simulate different road conditions or obstacles encountered during actual driving. Since durability tests are costly in-terms of time and money, accelerated durability lab tests can be used to spot failures before actual road tests. Signals of different events of the actual durability road tests generate three continuous time series data, that can be used to conduct accelerated durability lab tests. The actual analysis of these time series is very challenging because they are (i) of high frequency (ii) very noisy and (iii) inconsistent. The purpose of this study was to identify the patterns of signals from the noisy and inconsistent time series data collected from the field tests. The Box-Jenkins methodology was used to identify models corresponding to different events. Due to complex structures of the real data, ARMA modelling was considered after testing stationarity of the given time series. While the time series data in vertical direction was used to identify the first three events, the time series in vertical, longitudinal and lateral directions were used to identify other four events.

Page generated in 0.0495 seconds