1 |
Design techniques for low noise and high speed A/D convertersGupta, Amit Kumar 15 May 2009 (has links)
Analog-to-digital (A/D) conversion is a process that bridges the real analog world to digital
signal processing. It takes a continuous-time, continuous amplitude signal as its input and
outputs a discrete-time, discrete-amplitude signal. The resolution and sampling rate of an
A/D converter vary depending on the application. Recently, there has been a growing
demand for broadband (>1 MHz), high-resolution (>14bits) A/D converters. Applications
that demand such converters include asymmetric digital subscriber line (ADSL) modems,
cellular systems, high accuracy instrumentation, and medical imaging systems. This thesis
suggests some design techniques for such high resolution and high sampling rate A/D
converters.
As the A/D converter performance keeps on increasing it becomes increasingly
difficult for the input driver to settle to required accuracy within the sampling time. This is
because of the use of larger sampling capacitor (increased resolution) and a decrease in
sampling time (higher speed). So there is an increasing trend to have a driver integrated onchip
along with A/D converter. The first contribution of this thesis is to present a new
precharge scheme which enables integrating the input buffer with A/D converter in
standard CMOS process. The buffer also uses a novel multi-path common mode feedback
scheme to stabilize the common mode loop at high speeds.
Another major problem in achieving very high Signal to Noise and Distortion Ratio
(SNDR) is the capacitor mismatch in Digital to Analog Converters (DAC) inherent in the
A/D converters. The mismatch between the capacitor causes harmonic distortion, which
may not be acceptable. The analysis of Dynamic Element Matching (DEM) technique as applicable to broadband data-converters is presented and a novel second order notch-DEM
is introduced. In this thesis we present a method to calibrate the DAC. We also show that a
combination of digital error correction and dynamic element matching is optimal in terms
of test time or calibration time.
Even if we are using dynamic element matching techniques, it is still critical to get the
best matching of unit elements possible in a given technology. The matching obtained may
be limited either by random variations in the unit capacitor or by gradient effects. In this
thesis we present layout techniques for capacitor arrays, and the matching results obtained
in measurement from a test-chip are presented.
Thus we present various design techniques for high speed and low noise A/D
converters in this thesis. The techniques described are quite general and can be applied to
most of the types of A/D converters.
|
2 |
Implementation of Flash Analog-to-Digital Converters in Silicon-on-Insulator TechnologySäll, Erik January 2005 (has links)
<p>High speed analog-to-digital converters (ADCs) used in, e.g., read channel and ultra wideband (UWB) applications are often based on a flash topology. The read channel applications is the intended application of this work, where a part of the work covers the design of two different types of 6-bit flash ADCs. Another field of application is UWB receivers.</p><p>To optimize the performance of the whole system and derive the specifications for the sub-blocks of the system it is often desired to use a topdown design methodology. To facilitate the top-down design methodology the ADCs are modeled on behavioral level. The models are simulated in MATLAB®. The results are used to verify the functionality of the proposed circuit topologies and serve as a base to the circuit design phase.</p><p>The first flash ADC has a conventional topology. It has a resistor net connected to a number of latched comparators, but its thermometer-tobinary encoder is based on 2-to-1 multiplexers buffered with inverters. This gives a compact encoder with a regular structure and short critical path. The main disadvantage is the code dependent timing difference between the encoder outputs introduced by this topology. The ADC was simulated on schematic level in Cadence® using the foundry provided transistor models. The design obtained a maximum sampling frequency of 1 GHz, an effective resolution bandwidth of 390 MHz, and a power consumption of 170 mW.</p><p>The purpose of the second ADC is to demonstrate the concept of introducing dynamic element matching (DEM) into the reference net of a flash ADC. This design yields information about the performance improvements the DEM gives, and what the trade-offs are when introducing DEM. Behavioral level simulations indicate that the SFDR is improved by 11 dB when introducing DEM, but the settling time of the reference net with DEM will now limit the conversion speed of the converter. Further, the maximum input frequency is limited by the total resistance in the reference net, which gets increased in this topology. The total resistance is the total switch on-resistance plus the total resistance of the resistors. To increase the conversion speed and the maximum input frequency a new DEM topology is proposed in this work, which reduces the number of switches introduced into the reference net compared with earlier proposed DEM topologies. The transistor level simulations in Cadence® of the flash ADC with DEM indicates that the SFDR improves by 6 dB compared with when not using DEM, and is expected to improve more if more samples are used in the simulation. This was not possible in the current simulations due to the long simulation time. The improved SFDR is however traded for an increased chip area and a reduction of the maximum sampling frequency to 550 MHzfor this converter. The average power consumption is 92 mW.</p><p>A goal of this work is to evaluate a 130 nm partially depleted silicon-oninsulator (SOI) complementary metal oxide semiconductor (CMOS) technology with respect to analog circuit implementation. The converters are therefore implemented in this technology. When writing this the ADCs are still being manufactured. Since the technology evaluation will be based on the measurement results the final results of the evaluation are not included in this thesis. The conclusions regarding the SOI CMOS technology are therefore based on a literature study of published scientific papers in the SOI area, information extracted during the design phase of the ADCs, and from the transistor level circuit simulations. These inputs indicate that to fully utilize the potential performance advantages of the SOI CMOS technology the partially depleted SOI CMOS technology should be exchanged for a fully depleted SOI CMOS technology. The manufacturing difficulties regarding the control of the thin-film thickness must however first be solved before the exchange can be done.</p> / Report code: LiU-Tek-Lic-2005:68.
|
3 |
Low-power high-linearity digital-to-analog convertersKuo, Ming-Hung 09 March 2012 (has links)
In this thesis work, a design of 14-bit, 20MS/s segmented digital-to-analog converter
(DAC) is presented. The segmented DAC uses switched-capacitor configuration to
implement 8 (LSB) + 6 (MSB) segmented architecture to achieve high performance for
minimum area. The implemented LSB DAC is based on quasi-passive pipelined DAC
that has been proven to provide low power and high speed operation. Typically, capacitor
matching is the best among all integrated circuit components but the mismatch among
nominally equal value capacitors will introduce nonlinear distortion. By using dynamic
element matching (DEM) technique in the MSB DAC, the nonlinearity caused by
capacitor mismatch is greatly reduced. The output buffer employed direct charge transfer
(DCT) technique that can minimize kT/C noise without increasing the power dissipation.
This segmented DAC is designed and simulated in 0.18 μm CMOS technology, and the
simulated core DAC block only consumes 403 μW. / Graduation date: 2012
|
4 |
Design Considerations for Wide Bandwidth Continuous-Time Low-Pass Delta-Sigma Analog-to-Digital ConvertersPadyana, Aravind 1983- 14 March 2013 (has links)
Continuous-time (CT) delta-sigma (ΔΣ) analog-to-digital converters (ADC) have emerged as the popular choice to achieve high resolution and large bandwidth due to their low cost, power efficiency, inherent anti-alias filtering and digital post processing capabilities.
This work presents a detailed system-level design methodology for a low-power CT ΔΣ ADC. Design considerations and trade-offs at the system-level are presented. A novel technique to reduce the sensitivity of the proposed ADC to clock jitter-induced feedback charge variations by employing a hybrid digital-to-analog converter (DAC) based on switched-capacitor circuits is also presented. The proposed technique provides a clock jitter tolerance of up to 5ps (rms). The system is implemented using a 5th order active-RC loop filter, 9-level quantizer and DAC, achieving 74dB SNDR over 20MHz signal bandwidth, at 400MHz sampling frequency in a 1.2V, 90 nm CMOS technology.
A novel technique to improve the linearity of the feedback digital-to-analog converters (DAC) in a target 11-bits resolution, 100MHz bandwidth, 2GHz sampling frequency CT ΔΣ ADC is also presented in this work. DAC linearity is improved by combining dynamic element matching and automatic background calibration to achieve up to 18dB improvement in the SNR. Transistor-level circuit implementation of the proposed technique was done in a 1.8V, 0.18μm BiCMOS process.
|
5 |
Dynamic Element Matching Techniques For Delta-Sigma ADCs With Large Internal QuantizersNordick, Brent C. 01 July 2004 (has links) (PDF)
This thesis presents two methods that enable high internal quantizer resolution in delta-sigma analog-to-digital converters. Increasing the quantizer resolution in a delta-sigma modulator can increase SNR, improve stability and reduce integrator power consumption. However, each added bit of quantizer resolution also causes an exponential increase in the power dissipation, required area and complexity of the dynamic element matching (DEM) circuit required to attenuate digital-to-analog converter (DAC) mismatch errors. One way to overcome these drawbacks is to segment the feedback signal, creating a "coarse" signal and a "fine" signal. This reduces the DEM circuit complexity, power dissipation, and size. However, it also creates additional problems. The negative consequences of segmentation are presented, along with two potential solutions: one that uses calibration to cancel mismatch between the "coarse" DAC and the "fine" DAC, and another that frequency-shapes this mismatch error. Mathematical analysis and behavioral simulation results are presented. A potential circuit design for the frequency-shaping method is presented in detail. Circuit simulations for one of the proposed implementations show that the delay through the digital path is under 7 ns, thus permitting a 50 MHz clock frequency for the overall ADC.
|
6 |
Implementation of Flash Analog-to-Digital Converters in Silicon-on-Insulator TechnologySäll, Erik January 2005 (has links)
High speed analog-to-digital converters (ADCs) used in, e.g., read channel and ultra wideband (UWB) applications are often based on a flash topology. The read channel applications is the intended application of this work, where a part of the work covers the design of two different types of 6-bit flash ADCs. Another field of application is UWB receivers. To optimize the performance of the whole system and derive the specifications for the sub-blocks of the system it is often desired to use a topdown design methodology. To facilitate the top-down design methodology the ADCs are modeled on behavioral level. The models are simulated in MATLAB®. The results are used to verify the functionality of the proposed circuit topologies and serve as a base to the circuit design phase. The first flash ADC has a conventional topology. It has a resistor net connected to a number of latched comparators, but its thermometer-tobinary encoder is based on 2-to-1 multiplexers buffered with inverters. This gives a compact encoder with a regular structure and short critical path. The main disadvantage is the code dependent timing difference between the encoder outputs introduced by this topology. The ADC was simulated on schematic level in Cadence® using the foundry provided transistor models. The design obtained a maximum sampling frequency of 1 GHz, an effective resolution bandwidth of 390 MHz, and a power consumption of 170 mW. The purpose of the second ADC is to demonstrate the concept of introducing dynamic element matching (DEM) into the reference net of a flash ADC. This design yields information about the performance improvements the DEM gives, and what the trade-offs are when introducing DEM. Behavioral level simulations indicate that the SFDR is improved by 11 dB when introducing DEM, but the settling time of the reference net with DEM will now limit the conversion speed of the converter. Further, the maximum input frequency is limited by the total resistance in the reference net, which gets increased in this topology. The total resistance is the total switch on-resistance plus the total resistance of the resistors. To increase the conversion speed and the maximum input frequency a new DEM topology is proposed in this work, which reduces the number of switches introduced into the reference net compared with earlier proposed DEM topologies. The transistor level simulations in Cadence® of the flash ADC with DEM indicates that the SFDR improves by 6 dB compared with when not using DEM, and is expected to improve more if more samples are used in the simulation. This was not possible in the current simulations due to the long simulation time. The improved SFDR is however traded for an increased chip area and a reduction of the maximum sampling frequency to 550 MHzfor this converter. The average power consumption is 92 mW. A goal of this work is to evaluate a 130 nm partially depleted silicon-oninsulator (SOI) complementary metal oxide semiconductor (CMOS) technology with respect to analog circuit implementation. The converters are therefore implemented in this technology. When writing this the ADCs are still being manufactured. Since the technology evaluation will be based on the measurement results the final results of the evaluation are not included in this thesis. The conclusions regarding the SOI CMOS technology are therefore based on a literature study of published scientific papers in the SOI area, information extracted during the design phase of the ADCs, and from the transistor level circuit simulations. These inputs indicate that to fully utilize the potential performance advantages of the SOI CMOS technology the partially depleted SOI CMOS technology should be exchanged for a fully depleted SOI CMOS technology. The manufacturing difficulties regarding the control of the thin-film thickness must however first be solved before the exchange can be done. / <p>Report code: LiU-Tek-Lic-2005:68.</p>
|
Page generated in 0.1071 seconds