• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vibration serviceability of long-span cast in-situ concrete floors

Pavic, Aleksandar January 1999 (has links)
This thesis describes an investigation into the vibration serviceability of long-span and slender in-situ concrete floors, which are typically post-tensioned. The motivation for the research is the present trend towards increased slenderness of post-tensioned floors supporting open-plan high- quality offices where vibration serviceability may easily become the governing design criterion. The vibration serviceability issue in post-tensioned floors is now also recognised by the UK Concrete Society which proposed, for the first time, guidelines for performing a vibration serviceability check when designing office floors. The guidelines were published in Concrete Society Technical Report 43 (CSTR43) in 1994 and its publication prompted the initialisation of this research project. There were two reasons for this. Firstly, problems were reported with the reliability and practical application of these guidelines, and, secondly, the guidelines were not experimentally verified which is unusual for any design provision related to vibration serviceability. In order to improve understanding of the dynamic performance of a rather specific group of office floors which are long-span and made of cast in-situ concrete, a combined experimental and analytical approach has been adopted. A state-of-the-art facility comprising hardware and software suitable for field modal testing and dynamic response measurements of prototype floor structures was commissioned as a part of this research. The facility is built up around the instrumented sledge hammer, which served as the main excitation source in modal testing, and multi-degree-of-freedom vibration parameter estimation procedures utilising measured floor frequency response functions. The main testing programme consisted of modal testing of four prototype floor structures of varying complexity weighing between 13 and 1000 tonnes. All four slab structures were slender and made of in-situ concrete. These tests were complemented by measurements of the floors' acceleration responses to a single person walking excitation tuned to create as large as realistically possible responses. The modal testing experimental data (measured natural frequencies, mode shapes and modal damping ratios) were used to validate numerical finite element (FE) models representing each floor structure. To do this, advanced FE model correlation and manual updating procedures were employed. Results of these exercises highlighted a number of important issues related to the dynamic behaviour of the concrete floors investigated. Firstly, the bending stiffness of in-situ concrete columns and walls contributed significantly to overall floor bending stiffness and must be considered. Secondly, higher modes of vibration which are close to the fundamental frequency appear in concrete floors, and should not be neglected as they can be easily excited by walking leading to dynamic responses greater than those associated with the fundamental mode. Thirdly, the width of band beams contributes significantly to the lateral stiffness of post-tensioned floors, which, in turn, may be very beneficial for their vibration serviceability. The validated numerical FE models were then used to check the performance of three representative walking excitation models available in the literature. It was shown that, in general, all three models overestimated the measured response to the third harmonic of the walking excitation, which is particularly important for low-frequency office floors. Only one of the models did so in a way which is not overly conservative. This model is recommended for use in vibration serviceability assessment of post-tensioned floors. Finally, gross oversimplification of these important issues is identified as the principal reason for the failure of the current CSTR43 vibration serviceability guidelines to predict reliably vibration response of a wide range of post-tensioned in-situ cast concrete floors.
2

Studies on Wheel/Rail Contact – Impact Forces at Insulated Rail Joints

Pang, Tao, tony_pang@hotmail.com January 2008 (has links)
To investigate the wheel/rail contact impact forces at insulated rail joints (IRJs), a three-dimensional finite element model and strain gauged experiments are employed and reported in this thesis. The 3D wheel/rail contact-impact FE model adopts a two-stage analysis strategy in which the wheel-IRJ railhead contact is first established in the static analysis and the results transferred to dynamic analysis for impact simulations. The explicit FE method was employed in the dynamic analysis. The Lagrange Multiplier method and the Penalty method for contact constraint enforcement were adopted for the static and dynamic analyses respectively. The wheel/rail contact-impact in the vicinity of the end post is exhibited via numerical examples from the FE modelling. The wheel/rail contact impact mechanism is investigated. The strain gauged experiments which consist of a lab test and a field test are reported. The signature of the strain time series from the field test demonstrates a plausible record of the dynamic responses due to the wheel/rail contact impact. By using the experimental data, both the static and the dynamic FE models are validated. It is found that the stiffness discontinuity of the IRJ structure causes a running surface geometry discontinuity during the wheel passages which then causes the impact in the vicinity of the end post. Through a series of sensitivity studies of several IRJ design parameters, it is shown that the IRJ performance can be effectively improved with optimised design parameters.
3

Wave energy capture system - A pitching tank

ZHANG, Yan-ru 26 July 2011 (has links)
In this study we set a pitching fluid tank on a floating platform with two vertical springs on both sides to support it. By assuming that the fluid in the tank is un-compressible and in-viscous and that there are no breaking waves existing, we observe the dynamic responses of the fluid in the tank and the interactions between the tank and the floating platform under wave forces. Using numerical simulations to analyze sloshing forces of the fluid and responses of the floating platform, we compute the work of the couple system in different cases and finally get normalizing results to provide for different sizes. The main purpose of this study is to gather wave power into a composite floating platform via the vibration of the floating and the pitching motion of the tank induced by wave forces, to transform the wave power into mechanical energy, and to reduce the angle of the vibration, making the floating platform stable and improving the safety.
4

Dynamic Responses of the High Speed Gear Cam Systems

Lao, Yuan-syun 18 July 2008 (has links)
Abstract The gear-cam intermittent mechanism, mainly made up by cam, the sun gear, planet gear and planetary shelf , it has been used in automatically high speed die cutting and creasing machine. The main function of die cutting and creasing machine is cutting and creasing the cardboard, and through compounding the cam motion curves, it will can control the intermittent motion of a gear-cam intermittent mechanism and improve its dynamic characteristic. The effects of gear cam profile and driving speed on the dynamic responses of a box folding and die cutting machine are studied in this work. The input driving motor¡Bgear¡Bgear-cam and output chain mechanics are included in the dynamic system. The equation of motion of the whole system in derived by employing Lagrange¡¦s equation the 4th order Runge-Kutta method is used to simulation the fine domain response of the nonlinear equation of motion. The effect of cam profile, and driving speed on the system dynamic response have been simulated and analysed in the work.
5

Dynamic Responses of a Cam System by Using the Transfer Matrix Method

Yen, Chia-tse 27 July 2009 (has links)
The validity of transfer matrix method (TMM) employed in a nonlinear gear cam system is studied in this thesis. The nonlinear dynamic responses of each part in the nonlinear system are estimated by applying the 4th-order Runge-Kutta method. A high speed gear cam drive automatic die cutter was analyzed in this study. A 25 horsepower AC induction motor is designed to drive the system. To complete the cutting work, a sequential process of the harmonic motion and the intermittent motion are generated by the elbow mechanism and the gear cam mechanism, respectively. A simplified branched multi-rotor system is modeled to approximate the motion of the system. The variation of the dynamic parameters of the system in a loading cycle is estimated under a branched torsional system. The Holzer¡¦s transfer matrix method is used to study the variation of the system parameters during the intermittent movement. Moreover, the effect of time-varied speed introduced from the torque variation of the induction motor and gear cam mechanism on the nonlinear dynamic response of the system has also been investigated. To explore the dynamic effect of different cam designs, three different cam motion curves and seven operating rates have been analyzed in this work. The residual vibration of the last sprocket has also been discussed. Numerical results indicate that the proposed model is available to simulate the dynamic responses of a nonlinear gear cam drive system.
6

Methodologies for Assessment of Impact Dynamic Responses

Ranadive, Gauri Satishchandra January 2014 (has links) (PDF)
Evaluation of the performance of a product and its components under impact loading is one of the key considerations in design. In order to assess resistance to damage or ability to absorb energy through plastic deformation of a structural component, impact testing is often carried out to obtain the 'Force - Displacement' response of the deformed component. In this context, it may be noted that load cells and accelerometers are commonly used as sensors for capturing impact responses. A drop-weight impact testing set-up consisting of a moving impactor head with a lightweight piezoresistive accelerometer and a strain gage based compression load cell mounted on it is used to carry out the impact tests. The basic objective of the present study is to assess the accuracy of responses recorded by the said transducers, when these are mounted on a moving impactor head. In the present work, a novel approach of theoretically evaluating the responses obtained from this drop-weight impact testing set-up for different axially loaded specimen has been executed with the formulation of an equivalent lumped parameter model (LPM) of the test set-up. For the most common configuration of a moving impactor head mounted load cell system in which dynamic load is transferred from the impactor head to the load cell, a quantitative assessment is made of the possible discrepancy that can result in load cell response. Initially, a 3-DOF (degrees-of-freedom) LPM is considered to represent a given impact testing set-up with the test specimen represented with a nonlinear spring. Both the load cell and the accelerometer are represented with linear springs, while the impacting unit comprising an impactor head (hammer) and a main body with the load cell in between are modelled as rigid masses. An experimentally obtained force-displacement response is assumed to be a nearly true behaviour of a specimen. By specifying an impact velocity to the rigid masses as an initial condition, numerical solution of the governing differential equations is obtained using Implicit (Newmark-beta) and Explicit (Central difference) time integration techniques. It can be seen that the model accurately reproduces the input load-displacement behaviour of the nonlinear spring corresponding to the tested component, ensuring the accuracy of these numerical methods. The nonlinear spring representing the test specimen is approximated in a piecewise linear manner and the solution strategy adopted and implemented in the form of a MATLAB script is shown to yield excellent reproduction of the assumed load-displacement behaviour of the test specimen. This prediction also establishes the accuracy of the numerical approach employed in solving the LPM system. However, the spring representing the load cell yields a response that qualitatively matches the assumed input load-displacement response of the test specimen with a lower magnitude of peak load. The accelerometer, it appears, may be capable of predicting more closely the load experienced by a specimen provided an appropriate mass of the impactor system i.e. impacting unit, is chosen as the multiplier for the acceleration response. Error between input and computed (simulated) responses is quantified in terms of root mean square error (RMSE). The present study additionally throws light on the dependence of time step of integration on numerical results. For obtaining consistent results, estimation of critical time step (increment) is crucial in conditionally stable central difference method. The effect of the parameters of the impact testing set-up on the accuracy of the predicted responses has been studied for different combinations of main impactor mass and load cell stiffness. It has been found that the load cell response is oscillatory in nature which points out to the need for suitable filtering for obtaining the necessary smooth variation of axial impact load with respect to time as well as deformation. Accelerometer response also shows undulations which can similarly be observed in the experimental results as well. An appropriate standard SAE-J211 filter which is a low-pass Butterworth filter has been used to remove oscillations from the computed responses. A load cell is quite capable of predicting the nature of transient response of an impacted specimen when it is part of the impacting unit, but it may substantially under-predict the magnitudes of peak loads. All the above mentioned analysis for a 3 DOF model have been performed for thin-walled tubular specimens made of mild steel (hat-section), an aluminium alloy (square cross-section) and a glass fibre-reinforced composite (circular cross-section), thus confirming the generality of the inferences drawn on the computed responses. Further, results obtained using explicit and implicit methodologies are compared for three specimens, to find the effect, if any, on numerical solution procedure on the conclusions drawn. The present study has been further used for investigating the effects of input parameters (i.e. stiffness and mass of the system components, and impact velocity) on the computed results of transducers. Such an investigation can be beneficial in designing an impact testing set-up as well as transducers for recording impact responses. Next, the previous 3 DOF model representing the impact testing set-up has been extended to a 5 DOF model to show that additional refinement of the original 3 DOF model does not substantially alter the inferences drawn based on it. In the end, oscillations observed in computed load cell responses are analysed by computing natural frequencies for the 3 DOF lumped parameter model. To conclude the present study, a 2 DOF LPM of the given impact testing set-up with no load cell has been investigated and the frequency of oscillations in the accelerometer response is seen to increase corresponding to the mounting resonance frequency of the accelerometer. In order to explore the merits of alternative impact testing set-ups, LPMs have been formulated to idealize test configurations in which the load cell is arranged to come into direct contact with the specimen under impact, although the accelerometer is still mounted on the moving impactor head. One such arrangement is to have the load cell mounted stationary on the base under the specimen and another is to mount the load cell on the moving impactor head such that the load cell directly impacts the specimen. It is once again observed that both these models accurately reproduce the input load-displacement behaviour of the nonlinear spring corresponding to the tested component confirming the validity of the model. In contrast to the previous set-up which included a moving load cell not coming into contact with the specimen, the spring representing the load cell in these present cases yields a response that more closely matches the assumed input load-displacement response of a test specimen suggesting that the load cell coming into direct contact with the specimen can result in a more reliable measurement of the actual dynamic response. However, in practice, direct contact of the load cell with the specimen under impact loading is likely to damage the transducer, and hence needs to be mounted on the moving head, resulting in a loss of accuracy, which can be theoretically estimated and corrected by the methodology investigated in this work.
7

Fluctuation response patterns of network dynamics - An introduction

Zhang, Xiaozhu, Timme, Marc 01 March 2024 (has links)
Networked dynamical systems, i.e., systems of dynamical units coupled via nontrivial interaction topologies, constitute models of broad classes of complex systems, ranging from gene regulatory and metabolic circuits in our cells to pandemics spreading across continents. Most of such systems are driven by irregular and distributed fluctuating input signals from the environment. Yet how networked dynamical systems collectively respond to such fluctuations depends on the location and type of driving signal, the interaction topology and several other factors and remains largely unknown to date. As a key example, modern electric power grids are undergoing a rapid and systematic transformation towards more sustainable systems, signified by high penetrations of renewable energy sources. These in turn introduce significant fluctuations in power input and thereby pose immediate challenges to the stable operation of power grid systems. How power grid systems dynamically respond to fluctuating power feed-in as well as other temporal changes is critical for ensuring a reliable operation of power grids yet not well understood. In this work, we systematically introduce a linear response theory (LRT) for fluctuation-driven networked dynamical systems. The derivations presented not only provide approximate analytical descriptions of the dynamical responses of networks, but more importantly, also allow to extract key qualitative features about spatio-temporally distributed response patterns. Specifically, we provide a general formulation of a LRT for perturbed networked dynamical systems, explicate how dynamic network response patterns arise from the solution of the linearised response dynamics, and emphasise the role of LRT in predicting and comprehending power grid responses on different temporal and spatial scales and to various types of disturbances. Understanding such patterns from a general, mathematical perspective enables to estimate network responses quickly and intuitively, and to develop guiding principles for, e.g., power grid operation, control and design.
8

Development and Application of Big Data Analytics and Artificial Intelligence for Structural Health Monitoring and Metamaterial Design

Rih-Teng Wu (9293561) 26 August 2020 (has links)
<p>Recent advances in sensor technologies and data acquisition platforms have led to the era of Big Data. The rapid growth of artificial intelligence (AI), computing power and machine learning (ML) algorithms allow Big Data to be processed within affordable time constraints. This opens abundant opportunities to develop novel and efficient approaches to enhance the sustainability and resilience of Smart Cities. This work, by starting with a review of the state-of-the-art data fusion and ML techniques, focuses on the development of advanced solutions to structural health monitoring (SHM) and metamaterial design and discovery strategies. A deep convolutional neural network (CNN) based approach that is more robust against noisy data is proposed to perform structural response estimation and system identification. To efficiently detect surface defects using mobile devices with limited training data, an approach that incorporates network pruning into transfer learning is introduced for crack and corrosion detection. For metamaterial design, a reinforcement learning (RL) and a neural network based approach are proposed to reduce the computation efforts for the design of periodic and non-periodic metamaterials, respectively. Lastly, a physics-constrained deep auto-encoder (DAE) based approach is proposed to design the geometry of wave scatterers that satisfy user-defined downstream acoustic 2D wave fields. The robustness of the proposed approaches as well as their limitations are demonstrated and discussed through experimental data or/and numerical simulations. A roadmap for future works that may benefit the SHM and material design research communities is presented at the end of this dissertation.</p><br>

Page generated in 0.0691 seconds