Spelling suggestions: "subject:"dynamique dde glauber"" "subject:"dynamique dde lauber""
1 |
Dynamique stochastique d'interface discrète et modèles de dimèresLaslier, Benoît 02 July 2014 (has links) (PDF)
Nous avons étudié la dynamique de Glauber sur les pavages de domaines finies du plan par des losanges ou par des dominos de taille 2 × 1. Ces pavages sont naturellement associés à des surfaces de R^3, qui peuvent être vues comme des interfaces dans des modèles de physique statistique. En particulier les pavages par des losanges correspondent au modèle d'Ising tridimensionnel à température nulle. Plus précisément les pavages d'un domaine sont en bijection avec les configurations d'Ising vérifiant certaines conditions au bord (dépendant du domaine pavé). Ces conditions forcent la coexistence des phases + et - ainsi que la position du bord de l'interface. Dans la limite thermodynamique où L, la longueur caractéristique du système, tend vers l'infini, ces interfaces obéissent à une loi des grand nombre et convergent vers une forme limite déterministe ne dépendant que des conditions aux bord. Dans le cas où la forme limite est planaire et pour les losanges, Caputo, Martinelli et Toninelli [CMT12] ont montré que le temps de mélange Tmix de la dynamique est d'ordre O(L^{2+o(1)}) (scaling diffusif). Nous avons généralisé ce résultat aux pavages par des dominos, toujours dans le cas d'une forme limite planaire. Nous avons aussi prouvé une borne inférieure Tmix ≥ cL^2 qui améliore d'un facteur log le résultat de [CMT12]. Dans le cas où la forme limite n'est pas planaire, elle peut être analytique ou bien contenir des parties "gelées" où elle est en un sens dégénérée. Dans le cas où elle n'a pas de telle partie gelée, et pour les pavages par des losanges, nous avons montré que la dynamique de Glauber devient "macroscopiquement proche" de l'équilibre en un temps L^{2+o(1)}
|
2 |
Dynamique stochastique d’interface discrète et modèles de dimères / Stochastic dynamics of discrete interface and dimer modelsLaslier, Benoît 02 July 2014 (has links)
Nous avons étudié la dynamique de Glauber sur les pavages de domaines finies du plan par des losanges ou par des dominos de taille 2 × 1. Ces pavages sont naturellement associés à des surfaces de R^3, qui peuvent être vues comme des interfaces dans des modèles de physique statistique. En particulier les pavages par des losanges correspondent au modèle d'Ising tridimensionnel à température nulle. Plus précisément les pavages d'un domaine sont en bijection avec les configurations d'Ising vérifiant certaines conditions au bord (dépendant du domaine pavé). Ces conditions forcent la coexistence des phases + et - ainsi que la position du bord de l'interface. Dans la limite thermodynamique où L, la longueur caractéristique du système, tend vers l'infini, ces interfaces obéissent à une loi des grand nombre et convergent vers une forme limite déterministe ne dépendant que des conditions aux bord. Dans le cas où la forme limite est planaire et pour les losanges, Caputo, Martinelli et Toninelli [CMT12] ont montré que le temps de mélange Tmix de la dynamique est d'ordre O(L^{2+o(1)}) (scaling diffusif). Nous avons généralisé ce résultat aux pavages par des dominos, toujours dans le cas d'une forme limite planaire. Nous avons aussi prouvé une borne inférieure Tmix ≥ cL^2 qui améliore d'un facteur log le résultat de [CMT12]. Dans le cas où la forme limite n'est pas planaire, elle peut être analytique ou bien contenir des parties “gelées” où elle est en un sens dégénérée. Dans le cas où elle n'a pas de telle partie gelée, et pour les pavages par des losanges, nous avons montré que la dynamique de Glauber devient “macroscopiquement proche” de l'équilibre en un temps L^{2+o(1)} / We studied the Glauber dynamics on tilings of finite regions of the plane by lozenges or 2 × 1 dominoes. These tilings are naturally associated with surfaces of R^3, which can be seen as interfaces in statistical physics models. In particular, lozenge tilings correspond to three dimensional Ising model at zero temperature. More precisely, tilings of a finite regions are in bijection with Ising configurations with some boundary conditions (depending on the tiled domain). These boundary conditions impose the coexistence of the + and - phases, together with the position of the boundary of the interface. In the thermodynamic limit where L, the characteristic length of the system, tends toward infinity, these interface follow a law of large number and converge to a deterministic limit shape depending only on the boundary condition. When the limit shape is planar and for lozenge tilings, Caputo, Martinelli and Toninelli [CMT12] showed that the mixing time of the dynamics is of order (L^{2+o(1)}) (diffusive scaling). We generalized this result to domino tilings, always in the case of a planar limit shape. We also proved a lower bound Tmix ≥ cL^2 which improve on the result of [CMT12] by a log factor. When the limit shape is not planar, it can either be analytic or have some “frozen” domains where it is degenerated in a sense. When it does not have such frozen region, and for lozenge tilings, we showed that the Glauber dynamics becomes “macroscopically close” to equilibrium in a time L^{2+o(1)}
|
3 |
Le modèle d'Ising dilué : coexistence de phases à l'équilibre, dynamique dans la région de transition de phaseWouts, Marc 14 December 2007 (has links) (PDF)
Cette thèse porte sur le modèle d'Ising dilué, dans la région de transition de phase. Le modèle d'Ising est un modèle classique de la mécanique statistique ; il a la particularité de présenter deux phases distinctes à basse température, ce qui a motivé, entre autres, son utilisation pour l'étude rigoureuse de la coexistence de phases. Notre objectif était d'étendre la description du phénomène de coexistence de phases au cas du milieu aléatoire, c'est-à-dire au modèle d'Ising dilué, lorsque la température et la dilution sont suffisamment faibles pour que deux phases d'aimantation opposées apparaissent.<br /><br />La thèse comporte quatre chapitres. Dans un premier chapitre, nous adaptons les travaux de Pisztora au cas du milieu aléatoire et établissons une procédure de renormalisation compatible avec la dilution. Dans un second chapitre, nous étudions en détail la tension superficielle de ce modèle, pour la mesure de Gibbs correspondant à un milieu fixé, et pour la mesure moyennée. Nous caractérisons la limite à basse température de chacune de ces quantités et décrivons les formes des cristaux correspondants. Nous montrons que les déviations inférieures de la tension superficielle ont un coût surfacique et donnons une borne inférieure sur la fonction de taux à l'aide de méthodes de concentration de la mesure. Dans un troisième chapitre, nous décrivons le phénomène de coexistence de phases, sous la mesure Gibbs et sous la mesure moyennée. Dans un quatrième et dernier chapitre, nous concluons la thèse avec une application à la dynamique de Glauber, et montrons que l'autocorrélation décroît au plus vite comme une puissance inverse du temps.
|
Page generated in 0.0509 seconds