Spelling suggestions: "subject:"explainable AI (XAI)"" "subject:"unexplainable AI (XAI)""
1 |
Förklarbar AI och transparens i AI system för SMEs / Explainable AI and transparency in AI systems for SMEsMalmfors, Hilda, Beronius, Herman January 2024 (has links)
The study examines how explainable AI (XAI), and transparency can increase trust and facilitate the adoption of AI technologies within small and medium-sized enterprises (SMEs). These businesses face significant challenges in integrating AI due to limited technical expertise and resources. The purpose of the study is to explore how XAI could bridge the gap between complex AI models and human understanding, thereby enhancing trust and operational efficiency. The research methodology includes a case study with a literature review and expert interviews. The literature review provides background and context for the research question, while the expert interviews gather insights from employees in various roles and with different levels of experience within the participating SMEs. This approach offers a comprehensive understanding of the current state of AI adoption and the perceived importance of XAI and transparency. The results indicate a significant knowledge gap among SME employees regarding AI technologies, with many expressing a lack of familiarity and trust. However, there is strong consensus on the importance of transparency and explainability in AI systems. Participants noted that XAI could significantly improve trust and acceptance of AI technologies by making AI decisions more understandable and transparent. Specific benefits identified include better decision support, increased operational efficiency, and enhanced customer confidence. The study concludes that XAI and transparency are crucial for building trust and facilitating the adoption of AI technologies in SMEs. By making AI systems more comprehensible, XAI addresses the challenges posed by limited technical expertise and promotes broader acceptance of AI. The research emphasizes the need for continuous education and clear communication strategies to improve AI understanding among stakeholders within SMEs. To enhance transparency and user trust in AI systems, SMEs should prioritize the integration of XAI frameworks. It is essential to develop user-centered tools that provide clear explanations of AI decisions and to invest in ongoing education and training programs. Additionally, a company culture that values transparency and ethical AI practices would further support the successful adoption of AI technologies. The study contributes to the ongoing discourse on AI adoption in SMEs by providing empirical evidence on the role of XAI in building trust and improving transparency. It offers practical recommendations for SMEs to effectively leverage AI technologies while ensuring ethical and transparent AI practices in line with regulatory requirements and societal expectations. / Studien undersöker hur förklarbar AI (XAI) och transparens kan öka förtroendet och underlätta införandet av AI-teknologier inom små och medelstora företag (SME). Dessa företag står inför betydande utmaningar vid integrationen av AI på grund av begränsad teknisk expertis och resurser. Syftet med studien är att undersöka hur XAI kan överbrygga klyftan mellan komplexa AI-modeller och mänsklig förståelse, vilket i sin tur främjar förtroende och operationell effektivitet. Forskningsmetodiken inkluderar en fallstudie med en litteraturöversikt och expertintervjuer. Litteraturöversikten ger bakgrund och kontext till forskningsfrågan, medan expertintervjuerna samlar insikter från anställda i olika roller och med olika erfarenhetsnivåer i de deltagande SMEs. Detta tillvägagångssätt gav en omfattande förståelse av det nuvarande tillståndet för AI adoption och den upplevda vikten av XAI och transparens. Resultaten visar på en betydande kunskapslucka bland SME-anställda när det gäller AI teknologier, med många som uttrycker en brist på bekantskap och förtroende. Det råder dock stark enighet om vikten av transparens och förklarbarhet i AI-system. Deltagarna angav att XAI avsevärt kunde förbättra förtroendet och acceptansen av AI-teknologier genom att göra AI beslut mer förståeliga och transparenta. Specifika fördelar som identifierades inkluderar bättre beslutsstöd, ökad operationell effektivitet och ökat kundförtroende. Studien drar slutsatsen att XAI och transparens är avgörande för att skapa förtroende och underlätta införandet av AI-teknologier i SME. Genom att göra AI-system mer förståeliga adresserar XAI utmaningarna med begränsad teknisk expertis och främjar en bredare acceptans av AI. Forskningen understryker behovet av kontinuerlig utbildning och tydliga kommunikationsstrategier för att förbättra AI-förståelsen bland intressenter inom SME. För att öka transparensen och användarförtroendet i AI-system bör SME prioritera integrationen av XAI-ramverk. Det är viktigt att utveckla användarcentrerade verktyg som ger tydliga förklaringar av AI-beslut och att investera i kontinuerliga utbildnings- och träningsprogram. Dessutom kommer en organisationskultur som värderar transparens och etiska AI-praktiker ytterligare stödja det framgångsrika införandet av AI-teknologier. Studien bidrar till den pågående diskursen om AI-adoption i SME genom att tillhandahålla empiriska bevis på rollenav XAI i att bygga förtroende och förbättra transparens. Den erbjuder praktiska rekommendationer för SME att effektivt utnyttja AI-teknologier, och säkerställa etiska och transparenta AI-praktiker som är i linje med regulatoriska krav och samhälleliga förväntningar.
|
2 |
Is eXplainable AI suitable as a hypotheses generating tool for medical research? Comparing basic pathology annotation with heat maps to find outAdlersson, Albert January 2023 (has links)
Hypothesis testing has long been a formal and standardized process. Hypothesis generation, on the other hand, remains largely informal. This thesis assess whether eXplainable AI (XAI) can aid in the standardization of hypothesis generation through its utilization as a hypothesis generating tool for medical research. We produce XAI heat maps for a Convolutional Neural Network (CNN) trained to classify Microsatellite Instability (MSI) in colon and gastric cancer with four different XAI methods: Guided Backpropagation, VarGrad, Grad-CAM and Sobol Attribution. We then compare these heat maps with pathology annotations in order to look for differences to turn into new hypotheses. Our CNN successfully generates non-random XAI heat maps whilst achieving a validation accuracy of 85% and a validation AUC of 93% – as compared to others who achieve a AUC of 87%. Our results conclude that Guided Backpropagation and VarGrad are better at explaining high-level image features whereas Grad-CAM and Sobol Attribution are better at explaining low-level ones. This makes the two groups of XAI methods good complements to each other. Images of Microsatellite Insta- bility (MSI) with high differentiation are more difficult to analyse regardless of which XAI is used, probably due to exhibiting less regularity. Regardless of this drawback, our assessment is that XAI can be used as a useful hypotheses generating tool for research in medicine. Our results indicate that our CNN utilizes the same features as our basic pathology annotations when classifying MSI – with some additional features of basic pathology missing – features which we successfully are able to generate new hypotheses with.
|
3 |
Effektivisering av Tillverkningsprocesser med Artificiell Intelligens : Minskad Materialförbrukning och Förbättrad KvalitetskontrollAl-Saaid, Kasim, Holm, Daniel January 2024 (has links)
This report explores the implementation of AI techniques in the manufacturing process at Ovako, focusing on process optimization, individual traceability, and quality control. By integrating advanced AI models and techniques at various levels within the production process, Ovako can improve efficiency, reduce material consumption, and prevent production stops. For example, predictive maintenance can be applied to anticipate and prevent machine problems, while image recognition algorithms and optical character recognition enable individual traceability of each rod throughout the process. Furthermore, AI-based quality control can detect defects and deviations with high precision and speed, leading to reduced risk of faulty products and increased product quality. By carefully considering the role of the workforce, safety and ethical issues, and the benefits and challenges of AI implementation, Ovako can maximize the benefits of these techniques and enhance its competitiveness in the market. / Denna rapport utforskar implementeringen av AI-tekniker i tillverkningsprocessen hos Ovako, med fokus på processoptimering, individuell spårbarhet och kvalitetskontroll. Genom att integrera avancerade AI-modeller och tekniker på olika nivåer inom produktionsprocessen kan Ovako förbättra effektiviteten, minska materialförbrukningen och förhindra produktionsstopp. Exempelvis kan prediktivt underhåll tillämpas för att förutse och förebygga maskinproblem, medan bildigenkänningsalgoritmer och optisk teckenigenkänning möjliggör individuell spårbarhet av varje stång genom processen. Dessutom kan AI-baserad kvalitetskontroll detektera defekter och avvikelser med hög precision och hastighet, vilket leder till minskad risk för felaktiga produkter och ökad produktkvalitet. Genom att noggrant överväga arbetskraftens roll, säkerhets- och etikfrågor samt fördelarna och utmaningarna med AI-implementeringen kan Ovako maximera nyttan av dessa tekniker och förbättra sin konkurrenskraft på marknaden.
|
4 |
Applications of Deep Leaning on Cardiac MRI: Design Approaches for a Computer Aided DiagnosisPérez Pelegrí, Manuel 27 April 2023 (has links)
[ES] Las enfermedades cardiovasculares son una de las causas más predominantes de muerte y comorbilidad en los países desarrollados, por ello se han realizado grandes inversiones en las últimas décadas para producir herramientas de diagnóstico y aplicaciones de tratamiento de enfermedades cardíacas de alta calidad. Una de las mejores herramientas de diagnóstico para caracterizar el corazón ha sido la imagen por resonancia magnética (IRM) gracias a sus capacidades de alta resolución tanto en la dimensión espacial como temporal, lo que permite generar imágenes dinámicas del corazón para un diagnóstico preciso. Las dimensiones del ventrículo izquierdo y la fracción de eyección derivada de ellos son los predictores más potentes de morbilidad y mortalidad cardiaca y su cuantificación tiene connotaciones importantes para el manejo y tratamiento de los pacientes. De esta forma, la IRM cardiaca es la técnica de imagen más exacta para la valoración del ventrículo izquierdo. Para obtener un diagnóstico preciso y rápido, se necesita un cálculo fiable de biomarcadores basados en imágenes a través de software de procesamiento de imágenes. Hoy en día la mayoría de las herramientas empleadas se basan en sistemas semiautomáticos de Diagnóstico Asistido por Computador (CAD) que requieren que el experto clínico interactúe con él, consumiendo un tiempo valioso de los profesionales cuyo objetivo debería ser únicamente interpretar los resultados. Un cambio de paradigma está comenzando a entrar en el sector médico donde los sistemas CAD completamente automáticos no requieren ningún tipo de interacción con el usuario. Estos sistemas están diseñados para calcular los biomarcadores necesarios para un diagnóstico correcto sin afectar el flujo de trabajo natural del médico y pueden iniciar sus cálculos en el momento en que se guarda una imagen en el sistema de archivo informático del hospital.
Los sistemas CAD automáticos, aunque se consideran uno de los grandes avances en el mundo de la radiología, son extremadamente difíciles de desarrollar y dependen de tecnologías basadas en inteligencia artificial (IA) para alcanzar estándares médicos. En este contexto, el aprendizaje profundo (DL) ha surgido en la última década como la tecnología más exitosa para abordar este problema. Más específicamente, las redes neuronales convolucionales (CNN) han sido una de las técnicas más exitosas y estudiadas para el análisis de imágenes, incluidas las imágenes médicas. En este trabajo describimos las principales aplicaciones de CNN para sistemas CAD completamente automáticos para ayudar en la rutina de diagnóstico clínico mediante resonancia magnética cardíaca. El trabajo cubre los puntos principales a tener en cuenta para desarrollar tales sistemas y presenta diferentes resultados de alto impacto dentro del uso de CNN para resonancia magnética cardíaca, separados en tres proyectos diferentes que cubren su aplicación en la rutina clínica de diagnóstico, cubriendo los problemas de la segmentación, estimación automática de biomarcadores con explicabilidad y la detección de eventos.
El trabajo completo presentado describe enfoques novedosos y de alto impacto para aplicar CNN al análisis de resonancia magnética cardíaca. El trabajo proporciona varios hallazgos clave, permitiendo varias formas de integración de esta reciente y creciente tecnología en sistemas CAD completamente automáticos que pueden producir resultados altamente precisos, rápidos y confiables. Los resultados descritos mejorarán e impactarán positivamente el flujo de trabajo de los expertos clínicos en un futuro próximo. / [CA] Les malalties cardiovasculars són una de les causes de mort i comorbiditat més predominants als països desenvolupats, s'han fet grans inversions en les últimes dècades per tal de produir eines de diagnòstic d'alta qualitat i aplicacions de tractament de malalties cardíaques. Una de les tècniques millor provades per caracteritzar el cor ha estat la imatge per ressonància magnètica (IRM), gràcies a les seves capacitats d'alta resolució tant en dimensions espacials com temporals, que permeten generar imatges dinàmiques del cor per a un diagnòstic precís. Les dimensions del ventricle esquerre i la fracció d'ejecció que se'n deriva són els predictors més potents de morbiditat i mortalitat cardíaca i la seva quantificació té connotacions importants per al maneig i tractament dels pacients. D'aquesta manera, la IRM cardíaca és la tècnica d'imatge més exacta per a la valoració del ventricle esquerre. Per obtenir un diagnòstic precís i ràpid, es necessita un càlcul fiable de biomarcadors basat en imatges mitjançant un programa de processament d'imatges. Actualment, la majoria de les ferramentes emprades es basen en sistemes semiautomàtics de Diagnòstic Assistit per ordinador (CAD) que requereixen que l'expert clínic interaccioni amb ell, consumint un temps valuós dels professionals, l'objectiu dels quals només hauria de ser la interpretació dels resultats. S'està començant a introduir un canvi de paradigma al sector mèdic on els sistemes CAD totalment automàtics no requereixen cap tipus d'interacció amb l'usuari. Aquests sistemes estan dissenyats per calcular els biomarcadors necessaris per a un diagnòstic correcte sense afectar el flux de treball natural del metge i poden iniciar els seus càlculs en el moment en què es deixa la imatge dins del sistema d'arxius hospitalari.
Els sistemes CAD automàtics, tot i ser molt considerats com un dels propers grans avanços en el món de la radiologia, són extremadament difícils de desenvolupar i depenen de les tecnologies d'Intel·ligència Artificial (IA) per assolir els estàndards mèdics. En aquest context, l'aprenentatge profund (DL) ha sorgit durant l'última dècada com la tecnologia amb més èxit per abordar aquest problema. Més concretament, les xarxes neuronals convolucionals (CNN) han estat una de les tècniques més utilitzades i estudiades per a l'anàlisi d'imatges, inclosa la imatge mèdica. En aquest treball es descriuen les principals aplicacions de CNN per a sistemes CAD totalment automàtics per ajudar en la rutina de diagnòstic clínic mitjançant ressonància magnètica cardíaca. El treball recull els principals punts a tenir en compte per desenvolupar aquest tipus de sistemes i presenta diferents resultats d'impacte en l'ús de CNN a la ressonància magnètica cardíaca, tots separats en tres projectes principals diferents, cobrint els problemes de la segmentació, estimació automàtica de *biomarcadores amb *explicabilidad i la detecció d'esdeveniments.
El treball complet presentat descriu enfocaments nous i potents per aplicar CNN a l'anàlisi de ressonància magnètica cardíaca. El treball proporciona diversos descobriments clau, que permeten la integració de diverses maneres d'aquesta tecnologia nova però en constant creixement en sistemes CAD totalment automàtics que podrien produir resultats altament precisos, ràpids i fiables. Els resultats descrits milloraran i afectaran considerablement el flux de treball dels experts clínics en un futur proper. / [EN] Cardiovascular diseases are one of the most predominant causes of death and comorbidity in developed countries, as such heavy investments have been done in recent decades in order to produce high quality diagnosis tools and treatment applications for cardiac diseases. One of the best proven tools to characterize the heart has been magnetic resonance imaging (MRI), thanks to its high-resolution capabilities in both spatial and temporal dimensions, allowing to generate dynamic imaging of the heart that enable accurate diagnosis. The dimensions of the left ventricle and the ejection fraction derived from them are the most powerful predictors of cardiac morbidity and mortality, and their quantification has important connotations for the management and treatment of patients. Thus, cardiac MRI is the most accurate imaging technique for left ventricular assessment. In order to get an accurate and fast diagnosis, reliable image-based biomarker computation through image processing software is needed. Nowadays most of the employed tools rely in semi-automatic Computer-Aided Diagnosis (CAD) systems that require the clinical expert to interact with it, consuming valuable time from the professionals whose aim should only be at interpreting results. A paradigm shift is starting to get into the medical sector where fully automatic CAD systems do not require any kind of user interaction. These systems are designed to compute any required biomarkers for a correct diagnosis without impacting the physician natural workflow and can start their computations the moment an image is saved within a hospital archive system.
Automatic CAD systems, although being highly regarded as one of next big advances in the radiology world, are extremely difficult to develop and rely on Artificial Intelligence (AI) technologies in order to reach medical standards. In this context, Deep learning (DL) has emerged in the past decade as the most successful technology to address this problem. More specifically, convolutional neural networks (CNN) have been one of the most successful and studied techniques for image analysis, including medical imaging. In this work we describe the main applications of CNN for fully automatic CAD systems to help in the clinical diagnostics routine by means of cardiac MRI. The work covers the main points to take into account in order to develop such systems and presents different impactful results within the use of CNN to cardiac MRI, all separated in three different main projects covering the segmentation, automatic biomarker estimation with explainability and event detection problems.
The full work presented describes novel and powerful approaches to apply CNN to cardiac MRI analysis. The work provides several key findings, enabling the integration in several ways of this novel but non-stop growing technology into fully automatic CAD systems that could produce highly accurate, fast and reliable results. The results described will greatly improve and impact the workflow of the clinical experts in the near future. / Pérez Pelegrí, M. (2023). Applications of Deep Leaning on Cardiac MRI: Design Approaches for a Computer Aided Diagnosis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/192988
|
Page generated in 0.0419 seconds