Spelling suggestions: "subject:"économétrie."" "subject:"econométrico.""
81 |
Misspecified financial models in a data-rich environmentNokho, Cheikh I. 03 1900 (has links)
En finance, les modèles d’évaluation des actifs tentent de comprendre les différences de rendements observées entre divers actifs. Hansen and Richard (1987) ont montré que ces modèles sont des représentations fonctionnelles du facteur d’actualisation stochastique que les investisseurs utilisent pour déterminer le prix des actifs sur le marché financier. La littérature compte de nombreuses études économétriques qui s’intéressent à leurs estimations et à la comparaison de leurs performances, c’est-à-dire de leur capa- cité à expliquer les différences de rendement observées. Cette thèse, composée de trois articles, contribue à cette littérature.
Le premier article examine l’estimation et la comparaison des modèles d’évaluation des actifs dans un environnement riche en données. Nous mettons en œuvre deux méthodes de régularisation interprétables de la distance de Hansen and Jagannathan (1997, HJ ci-après) dans un contexte où les actifs sont nombreux. Plus précisément, nous introduisons la régularisation de Tikhonov et de Ridge pour stabiliser l’inverse de la matrice de covariance de la distance de HJ. La nouvelle mesure, qui en résulte, peut être interprétée comme la distance entre le facteur d’actualisation d’un modèle et le facteur d’actualisation stochastique valide le plus proche qui évalue les actifs avec des erreurs contrôlées. Ainsi, ces méthodes de régularisation relâchent l’équation fondamentale de l’évaluation des actifs financiers. Aussi, elles incorporent un paramètre de régularisation régissant l’ampleur des erreurs d’évaluation. Par la suite, nous présentons une procédure pour estimer et faire des tests sur les paramètres d’un modèle d’évaluation des actifs financiers avec un facteur d’actualisation linéaire en minimisant la distance de HJ régularisée. De plus, nous obtenons la distribution asymptotique des estimateurs lorsque le nombre d’actifs devient grand. Enfin, nous déterminons la distribution de la distance régularisée pour comparer différents modèles d’évaluation des actifs. Empiriquement, nous estimons et comparons quatre modèles à l’aide d’un ensemble de données comportant 252 portefeuilles.
Le deuxième article estime et compare dix modèles d’évaluation des actifs, à la fois inconditionnels et conditionnels, en utilisant la distance de HJ régularisée et 3 198 portefeuilles s’étendant de juillet 1973 à juin 2018. Ces portefeuilles combinent les portefeuilles bien connus triés par caractéristiques avec des micro-portefeuilles. Les micro-portefeuilles sont formés à l’aide de variables financières mais contiennent peu d’actions (5 à 10), comme indiqué dans Barras (2019). Par conséquent, ils sont analogues aux actions individuelles, offrent une grande variabilité de rendements et améliorent le pouvoir discriminant des portefeuilles classiques triés par caractéristiques. Parmi les modèles considérés, quatre sont des modèles macroéconomiques ou théoriques, dont le modèle de CAPM avec consommation (CCAPM), le modèle de CAPM avec consommation durable (DCAPM) de Yogo (2006), le modèle de CAPM avec capital humain (HCAPM) de Jagannathan and Wang (1996), et le modèle d’évaluation des actifs avec intermédiaires financiers (IAPM) de He, Kelly, and Manela (2017). Cinq modèles basés sur les anomalies sont considérés, tels que les modèles à trois (FF3) et à cinq facteurs (FF5) proposés par Fama and French, 1993 et 2015, le modèle de Carhart (1997) intégrant le facteur Momentum dans FF3, le modèle de liquidité de Pástor and Stambaugh (2003) et le modèle q5 de Hou et al. (2021). Le modèle de consommation de Lettau and Ludvigson (2001) utilisant des données trimestrielles est également estimé. Cependant, il n’est pas inclus dans les comparaisons en raison de la puissance de test réduite. Par rapport aux modèles inconditionnels, les modèles conditionnels tiennent compte des cycles économiques et des fluctuations des marchés financiers en utilisant les indices d’incertitude macroéconomique et financière de Ludvigson, Ma, and Ng (2021). Ces modèles conditionnels ont des erreurs de spécification considérablement réduites. Les analyses comparatives des modèles inconditionnels indiquent que les modèles macroéconomiques présentent globalement les mêmes pouvoirs explicatifs. De plus, ils ont un pouvoir explicatif global inférieur à celui des modèles basés sur les anomalies, à l’exception de FF3. L’augmentation de FF3 avec le facteur Momentum et de liquidité améliore sa capacité explicative. Cependant ce nouveau modèle est inférieur à FF5 et q5. Pour les modèles conditionnels, les modèles macroéconomiques DCAPM et HCAPM surpassent CCAPM et IAPM. En outre, ils ont des erreurs de spécification similaires à celles des modèles conditionnels de Carhart et de liquidité, mais restent en deçà des modèles FF5 et q5. Ce dernier domine tous les autres modèles.
Le troisième article présente une nouvelle approche pour estimer les paramètres du facteur d’actualisation linéaire des modèles d’évaluation d’actifs linéaires mal spécifiés avec de nombreux actifs. Contrairement au premier article de Carrasco and Nokho (2022), cette approche s’applique à la fois aux rendements bruts et excédentaires. La méthode proposée régularise toujours la distance HJ : l’inverse de la matrice de second moment est la matrice de pondération pour les rendements bruts, tandis que pour les rendements excédentaires, c’est l’inverse de la matrice de covariance. Plus précisément, nous dérivons la distribution asymptotique des estimateurs des paramètres du facteur d’actualisation stochastique lorsque le nombre d’actifs augmente. Nous discutons également des considérations pertinentes pour chaque type de rendements et documentons les propriétés d’échantillon fini des estimateurs. Nous constatons qu’à mesure que le nombre d’actifs augmente, l’estimation des paramètres par la régularisation de l’inverse de la matrice de covariance des rendements excédentaires présente un contrôle de taille supérieur par rapport à la régularisation de l’inverse de la matrice de second moment des rendements bruts. Cette supériorité découle de l’instabilité inhérente à la matrice de second moment des rendements bruts. De plus, le rendement brut de l’actif sans risque présente une variabilité minime, ce qui entraîne une colinéarité significative avec d’autres actifs que la régularisation ne parvient pas à atténuer. / In finance, asset pricing models try to understand the differences in expected returns observed among various assets. Hansen and Richard (1987) showed that these models are functional representations of the discount factor investors use to price assets in the financial market. The literature counts many econometric studies that deal with their estimation and the comparison of their performance, i.e., how well they explain the differences in expected returns. This thesis, divided into three chapters, contributes to this literature.
The first paper examines the estimation and comparison of asset pricing models in a data-rich environment. We implement two interpretable regularization schemes to extend the renowned Hansen and Jagannathan (1997, HJ hereafter) distance to a setting with many test assets. Specifically, we introduce Tikhonov and Ridge regularizations to stabilize the inverse of the covariance matrix in the HJ distance. The resulting misspecification measure can be interpreted as the distance between a proposed pricing kernel and the nearest valid stochastic discount factor (SDF) pricing the test assets with controlled errors, relaxing the Fundamental Equation of Asset Pricing. So, these methods incorporate a regularization parameter governing the extent of the pricing errors. Subsequently, we present a procedure to estimate the SDF parameters of a linear asset pricing model by minimizing the regularized distance. The SDF parameters completely define the asset pricing model and determine if a particular observed factor is a priced source of risk in the test assets. In addition, we derive the asymptotic distribution of the estimators when the number of assets and time periods increases. Finally, we derive the distribution of the regularized distance to compare comprehensively different asset pricing models. Empirically, we estimate and compare four empirical asset pricing models using a dataset of 252 portfolios.
The second paper estimates and compares ten asset pricing models, both unconditional and conditional, utilizing the regularized HJ distance and 3198 portfolios spanning July 1973 to June 2018. These portfolios combine the well-known characteristic-sorted portfolios with micro portfolios. The micro portfolios are formed using firms' observed financial characteristics (e.g. size and book-to-market) but contain few stocks (5 to 10), as discussed in Barras (2019). Consequently, they are analogous to individual stocks, offer significant return spread, and improve the discriminatory power of the characteristics-sorted portfolios. Among the models, four are macroeconomic or theoretical models, including the Consumption Capital Asset Pricing Model (CCAPM), Durable Consumption Capital Asset Pricing Model (DCAPM) by Yogo (2006), Human Capital Capital Asset Pricing Model (HCAPM) by Jagannathan and Wang (1996), and Intermediary Asset pricing model (IAPM) by He, Kelly, and Manela (2017). Five anomaly-driven models are considered, such as the three (FF3) and Five-factor (FF5) Models proposed by Fama and French, 1993 and 2015, the Carhart (1997) model incorporating momentum into FF3, the Liquidity Model by Pástor and Stambaugh (2003), and the Augmented q-Factor Model (q5) by Hou et al. (2021). The Consumption model of Lettau and Ludvigson (2001) using quarterly data is also estimated but not included in the comparisons due to the reduced power of the tests. Compared to the unconditional models, the conditional ones account for the economic business cycles and financial market fluctuations by utilizing the macroeconomic and financial uncertainty indices of Ludvigson, Ma, and Ng (2021). These conditional models show significantly reduced pricing errors. Comparative analyses of the unconditional models indicate that the macroeconomic models exhibit similar pricing performances of the returns. In addition, they display lower overall explanatory power than anomaly-driven models, except for FF3. Augmenting FF3 with momentum and liquidity factors enhances its explanatory capability. However, the new model is inferior to FF5 and q5. For the conditional models, the macroeconomic models DCAPM and HCAPM outperform CCAPM and IAPM. Furthermore, they have similar pricing errors as the conditional Carhart and liquidity models but still fall short of the FF5 and q5. The latter dominates all the other models.
This third paper introduces a novel approach for estimating the SDF parameters in misspecified linear asset pricing models with many assets. Unlike the first paper, Carrasco and Nokho (2022), this approach is applicable to both gross and excess returns as test assets. The proposed method still regularizes the HJ distance: the inverse of the second-moment matrix is the weighting matrix for the gross returns, while for excess returns, it is the inverse of the covariance matrix. Specifically, we derive the asymptotic distribution of the SDF estimators under a double asymptotic condition where the number of test assets and time periods go to infinity. We also discuss relevant considerations for each type of return and document the finite sample properties of the SDF estimators with gross and excess returns. We find that as the number of test assets increases, the estimation of the SDF parameters through the regularization of the inverse of the excess returns covariance matrix exhibits superior size control compared to the regularization of the inverse of the gross returns second-moment matrix. This superiority arises from the inherent instability of the second-moment matrix of gross returns. Additionally, the gross return of the risk-free asset shows minimal variability, resulting in significant collinearity with other test assets that the regularization fails to mitigate.
|
82 |
Le "maillon faible" de la régulation des dépenses de santé en France : les comportements inattendus des médecins libéraux : quatre approches micrométriques longitudinales / The "weak link" in the french regulation of health expenditure : unexpected behaviours of self-employed physicians : four microeconometric longitudinal approachesLievaut, Jeanne 25 November 2010 (has links)
L’objectif central de cette thèse est d’appréhender « le maillon faible » du système français de régulation et de contrôle des dépenses de santé, entendu comme un élément résiduel, « caché », qui empêche le système de parvenir aux objectifs ciblés. Nous mettons en œuvre les outils économiques et économétriques pour tester l’hypothèse selon laquelle les comportements dépensiers et inattendus des médecins sont liés aux politiques publiques. Pour appréhender le phénomène recherché nous menons quatre études micro–économétriques (qui sont économiques, quantitatives et sociologiques) de l’évolution du comportement du médecin omnipraticien libéral français. Nous nous sommes intéressés aux choix volontaires des praticiens portant sur les pratiques tarifaires et sur l’organisation du travail. Dans le cadre de l’approche économétrique, nous utilisons les données d’un panel non-cylindré de 8131 médecins libéraux différents observés durant la période 1979-2000 et représentatifs de la population concernée, ainsi que les méthodes économétriques appropriées à chaque cas étudié selon sa nature. Outre la validité de l’hypothèse, les résultats obtenus apportent des éléments de compréhension du type de rationalité du médecin, de ses motivations, des facteurs qui guident ses choix et des pistes d’explication de l’inefficacité des dispositifs politiques mis en œuvre. Ils fournissent également des réflexions sur les recommandations à faire en matière de mesures politiques et suggèrent de nouvelles pistes de recherche. / The main aim of that doctoral dissertation is to comprehend "the weak link" in the French system of regulation and control of health expenditure, understood us a residual, "hidden" element, which prevents the system from reaching the targets. We use the economic and econometric methods to prove the hypothesis that unexpected and wasteful medical behaviour can be caused by the public policy. There are four micro-econometric studies (which are economic, sociological and quantitative) of the French general self-employed practitioner’s behavioural evolution. We focus on the practitioner’s voluntary choices of the pricing practices and on the medical practice organisation. In the econometric studies, we use an unbalanced panel data comprising 8131 self-employed physicians who were observed over the 1979-2000 period and who are representative of the medical population, and different econometric methods depending on the analysis. Our results offer an empirical understanding of an unexpected medical behaviour phenomenon; they offer information about the practitioner’s rationality kind, the practitioner’s motivations, the factors exerting influence on their choices; and they offer clarification of the public policy’s inefficiency. Also, our results propose observations about a recommendation for policy measures and new approaches for the future research.
|
83 |
Essays on tail risk in macroeconomics and finance: measurement and forecastingRicci, Lorenzo 13 February 2017 (has links)
This thesis is composed of three chapters that propose some novel approaches on tail risk for financial market and forecasting in finance and macroeconomics. The first part of this dissertation focuses on financial market correlations and introduces a simple measure of tail correlation, TailCoR, while the second contribution addresses the issue of identification of non- normal structural shocks in Vector Autoregression which is common on finance. The third part belongs to the vast literature on predictions of economic growth; the problem is tackled using a Bayesian Dynamic Factor model to predict Norwegian GDP.Chapter I: TailCoRThe first chapter introduces a simple measure of tail correlation, TailCoR, which disentangles linear and non linear correlation. The aim is to capture all features of financial market co- movement when extreme events (i.e. financial crises) occur. Indeed, tail correlations may arise because asset prices are either linearly correlated (i.e. the Pearson correlations are different from zero) or non-linearly correlated, meaning that asset prices are dependent at the tail of the distribution.Since it is based on quantiles, TailCoR has three main advantages: i) it is not based on asymptotic arguments, ii) it is very general as it applies with no specific distributional assumption, and iii) it is simple to use. We show that TailCoR also disentangles easily between linear and non-linear correlations. The measure has been successfully tested on simulated data. Several extensions, useful for practitioners, are presented like downside and upside tail correlations.In our empirical analysis, we apply this measure to eight major US banks for the period 2003-2012. For comparison purposes, we compute the upper and lower exceedance correlations and the parametric and non-parametric tail dependence coefficients. On the overall sample, results show that both the linear and non-linear contributions are relevant. The results suggest that co-movement increases during the financial crisis because of both the linear and non- linear correlations. Furthermore, the increase of TailCoR at the end of 2012 is mostly driven by the non-linearity, reflecting the risks of tail events and their spillovers associated with the European sovereign debt crisis. Chapter II: On the identification of non-normal shocks in structural VARThe second chapter deals with the structural interpretation of the VAR using the statistical properties of the innovation terms. In general, financial markets are characterized by non- normal shocks. Under non-Gaussianity, we introduce a methodology based on the reduction of tail dependency to identify the non-normal structural shocks.Borrowing from statistics, the methodology can be summarized in two main steps: i) decor- relate the estimated residuals and ii) the uncorrelated residuals are rotated in order to get a vector of independent shocks using a tail dependency matrix. We do not label the shocks a priori, but post-estimate on the basis of economic judgement.Furthermore, we show how our approach allows to identify all the shocks using a Monte Carlo study. In some cases, the method can turn out to be more significant when the amount of tail events are relevant. Therefore, the frequency of the series and the degree of non-normality are relevant to achieve accurate identification.Finally, we apply our method to two different VAR, all estimated on US data: i) a monthly trivariate model which studies the effects of oil market shocks, and finally ii) a VAR that focuses on the interaction between monetary policy and the stock market. In the first case, we validate the results obtained in the economic literature. In the second case, we cannot confirm the validity of an identification scheme based on combination of short and long run restrictions which is used in part of the empirical literature.Chapter III :Nowcasting NorwayThe third chapter consists in predictions of Norwegian Mainland GDP. Policy institutions have to decide to set their policies without knowledge of the current economic conditions. We estimate a Bayesian dynamic factor model (BDFM) on a panel of macroeconomic variables (all followed by market operators) from 1990 until 2011.First, the BDFM is an extension to the Bayesian framework of the dynamic factor model (DFM). The difference is that, compared with a DFM, there is more dynamics in the BDFM introduced in order to accommodate the dynamic heterogeneity of different variables. How- ever, in order to introduce more dynamics, the BDFM requires to estimate a large number of parameters, which can easily lead to volatile predictions due to estimation uncertainty. This is why the model is estimated with Bayesian methods, which, by shrinking the factor model toward a simple naive prior model, are able to limit estimation uncertainty.The second aspect is the use of a small dataset. A common feature of the literature on DFM is the use of large datasets. However, there is a literature that has shown how, for the purpose of forecasting, DFMs can be estimated on a small number of appropriately selected variables.Finally, through a pseudo real-time exercise, we show that the BDFM performs well both in terms of point forecast, and in terms of density forecasts. Results indicate that our model outperforms standard univariate benchmark models, that it performs as well as the Bloomberg Survey, and that it outperforms the predictions published by the Norges Bank in its monetary policy report. / Doctorat en Sciences économiques et de gestion / info:eu-repo/semantics/nonPublished
|
84 |
Modélisation de la Volatilité Implicite, Primes de Risque d’Assurance, et Stratégies d’Arbitrage de Volatilité / Implied Volatility Modelling, Tail Risk Premia, and Volatility Arbitrage StrategiesAl Wakil, Anmar 11 December 2017 (has links)
Les stratégies de volatilité ont connu un rapide essor suite à la crise financière de 2008. Or, les récentes performances catastrophiques de ces instruments indiciels ont remis en question leurs contributions en couverture de portefeuille. Mes travaux de thèse visent à repenser, réinventer la philosophie des stratégies de volatilité. Au travers d'une analyse empirique préliminaire reposant sur la théorie de l'utilité espérée, le chapitre 1 dresse le diagnostic des stratégies traditionnelles de volatilité basées sur la couverture de long-terme par la réplication passive de la volatilité implicite. Il montre que, bien que ce type de couverture bat la couverture traditionnelle, elle s'avère inappropriée pour des investisseurs peu averses au risque.Le chapitre 2 ouvre la voie à une nouvelle génération de stratégies de volatilité, actives, optionnelles et basées sur l'investissement factoriel. En effet, notre décomposition analytique et empirique du smile de volatilité implicite en primes de risque implicites, distinctes et investissables permet de monétiser de manière active le portage de risques d'ordres supérieurs. Ces primes de risques mesurent l'écart de valorisation entre les distributions neutres au risque et les distributions physiques.Enfin, le chapitre 3 compare notre approche investissement factoriel avec les stratégies de volatilité employées par les hedge funds. Notre essai montre que nos stratégies de primes de risque d'assurance sont des déterminants importants dans la performance des hedge funds, tant en analyse temporelle que cross-sectionnelle. Ainsi, nous mettons en évidence dans quelle mesure l'alpha provient en réalité de la vente de stratégies d'assurance contre le risque extrême. / Volatility strategies have flourished since the Great Financial Crisis in 2008. Nevertheless, the recent catastrophic performance of such exchange-traded products has put into question their contributions for portfolio hedging and diversification. My thesis work aims to rethink and reinvent the philosophy of volatility strategies.From a preliminary empirical study based on the expected utility theory, Chapter 1 makes a diagnostic of traditional volatility strategies, based on buy-and-hold investments and passive replication of implied volatility. It exhibits that, although such portfolio hedging significantly outperforms traditional hedging, it appears strongly inappropriate for risk-loving investors.Chapter 2 paves the way for a new generation of volatility strategies, active, option-based and factor-based investing. Indeed, our both analytical and empirical decomposition of implied volatility smiles into a combination of implied risk premia, distinct and tradeable, enables to harvest actively the compensation for bearing higher-order risks. These insurance risk premia measure the pricing discrepanciesbetween the risk-neutral and the physical probability distributions.Finally, Chapter 3 compares our factor-based investing approach to the strategies usually employed in the hedge fund universe. Our essay clearly evidences that our tail risk premia strategies are incremental determinants in the hedge fund performance, in both the time-series and the cross-section of returns. Hence, we exhibit to what extent hedge fund alpha actually arises from selling crash insurance strategies against tail risks.
|
85 |
Education, labor markets, and natural disastersHeidelk, Tillmann 24 April 2020 (has links) (PDF)
This thesis explores the entire cycle of education, from initial access to schooling, over degree completion, to returns to education. Despite recent gains in increasing access, an tens of millions of children worldwide are still out of school. Abolishing school fees has increased enrollment rates in several countries where enrollments were low and fees were high. However, such policies may be less effective, or even have negative consequences, when supply-side responses are weak. The first part of the thesis evaluates the impacts of a tuition waiver program in Haiti, which provided public financing to nonpublic schools conditional on not charging tuition. The chapter concludes that school's participation in the program results in more students enrolled, more staff, and slightly higher student-teacher ratios. The program also reduces grade repetition and the share of overage students. While the increase in students does not directly equate to a reduction in the number of children out of school, it does demonstrate strong demand from families for the program and a correspondingly strong supply response from the nonpublic sector.Pertaining degree completion, it is well established that natural disasters can have a negative effect on human capital accumulation. However, a comparison of the differential impacts of distinct disaster classes is missing. Using census data and information from DesInventar and EMDAT, two large disaster databases, the second part of the thesis assesses how geological disasters and climatic shocks affect the upper secondary degree attainment of adolescents. The chapter focuses on Mexico, given its diverse disaster landscape and lack of obligatory upper secondary education over the observed time period. While all disaster types are found to impede attainment, climatic disasters that are not infrastructure-destructive (e.g. droughts) have the strongest negative effect, decreasing educational expansion by over 40%. The effects seem largely driven by demand-side changes such as increases in school dropouts and fertility, especially for young women. The results may also be influenced by deteriorated parental labor market outcomes. Supply-side effects appear to be solely driven by infrastructure-destructive climatic shocks (e.g. floods). These findings thus call for differential public measures according to specific disaster types and an enhanced attention to climatic events given their potentially stronger impact on younger generations.It is also widely appreciated that natural disasters can have negative impacts on local labor market outcomes. However, the study of differential types of negative capital shocks, the underlying labor market mechanisms, and the context of the poorest countries have been neglected. Following testable predictions of economic theory, the third part of the thesis exploits the exogenous variation of destruction of human and physical capital caused by the 2010 Haiti earthquake to disentangle the differential impact on local individual monetary returns to education. Employing individual-level survey data from before and after the earthquake the chapter finds that the returns decreased on average by 37%, especially in equipment-capital intensive industry. Higher educated individuals adjust into low-paying self-employment or agriculture. The returns are particularly shock-sensitive for urban residents, migrants, males, and people over age 25. / Doctorat en Sciences économiques et de gestion / info:eu-repo/semantics/nonPublished
|
86 |
Contribution à la statistique spatiale et l'analyse de données fonctionnelles / Contribution to spatial statistics and functional data analysisAhmed, Mohamed Salem 12 December 2017 (has links)
Ce mémoire de thèse porte sur la statistique inférentielle des données spatiales et/ou fonctionnelles. En effet, nous nous sommes intéressés à l’estimation de paramètres inconnus de certains modèles à partir d’échantillons obtenus par un processus d’échantillonnage aléatoire ou non (stratifié), composés de variables indépendantes ou spatialement dépendantes.La spécificité des méthodes proposées réside dans le fait qu’elles tiennent compte de la nature de l’échantillon étudié (échantillon stratifié ou composé de données spatiales dépendantes).Tout d’abord, nous étudions des données à valeurs dans un espace de dimension infinie ou dites ”données fonctionnelles”. Dans un premier temps, nous étudions les modèles de choix binaires fonctionnels dans un contexte d’échantillonnage par stratification endogène (échantillonnage Cas-Témoin ou échantillonnage basé sur le choix). La spécificité de cette étude réside sur le fait que la méthode proposée prend en considération le schéma d’échantillonnage. Nous décrivons une fonction de vraisemblance conditionnelle sous l’échantillonnage considérée et une stratégie de réduction de dimension afin d’introduire une estimation du modèle par vraisemblance conditionnelle. Nous étudions les propriétés asymptotiques des estimateurs proposées ainsi que leurs applications à des données simulées et réelles. Nous nous sommes ensuite intéressés à un modèle linéaire fonctionnel spatial auto-régressif. La particularité du modèle réside dans la nature fonctionnelle de la variable explicative et la structure de la dépendance spatiale des variables de l’échantillon considéré. La procédure d’estimation que nous proposons consiste à réduire la dimension infinie de la variable explicative fonctionnelle et à maximiser une quasi-vraisemblance associée au modèle. Nous établissons la consistance, la normalité asymptotique et les performances numériques des estimateurs proposés.Dans la deuxième partie du mémoire, nous abordons des problèmes de régression et prédiction de variables dépendantes à valeurs réelles. Nous commençons par généraliser la méthode de k-plus proches voisins (k-nearest neighbors; k-NN) afin de prédire un processus spatial en des sites non-observés, en présence de co-variables spatiaux. La spécificité du prédicteur proposé est qu’il tient compte d’une hétérogénéité au niveau de la co-variable utilisée. Nous établissons la convergence presque complète avec vitesse du prédicteur et donnons des résultats numériques à l’aide de données simulées et environnementales.Nous généralisons ensuite le modèle probit partiellement linéaire pour données indépendantes à des données spatiales. Nous utilisons un processus spatial linéaire pour modéliser les perturbations du processus considéré, permettant ainsi plus de flexibilité et d’englober plusieurs types de dépendances spatiales. Nous proposons une approche d’estimation semi paramétrique basée sur une vraisemblance pondérée et la méthode des moments généralisées et en étudions les propriétés asymptotiques et performances numériques. Une étude sur la détection des facteurs de risque de cancer VADS (voies aéro-digestives supérieures)dans la région Nord de France à l’aide de modèles spatiaux à choix binaire termine notre contribution. / This thesis is about statistical inference for spatial and/or functional data. Indeed, weare interested in estimation of unknown parameters of some models from random or nonrandom(stratified) samples composed of independent or spatially dependent variables.The specificity of the proposed methods lies in the fact that they take into considerationthe considered sample nature (stratified or spatial sample).We begin by studying data valued in a space of infinite dimension or so-called ”functionaldata”. First, we study a functional binary choice model explored in a case-controlor choice-based sample design context. The specificity of this study is that the proposedmethod takes into account the sampling scheme. We describe a conditional likelihoodfunction under the sampling distribution and a reduction of dimension strategy to definea feasible conditional maximum likelihood estimator of the model. Asymptotic propertiesof the proposed estimates as well as their application to simulated and real data are given.Secondly, we explore a functional linear autoregressive spatial model whose particularityis on the functional nature of the explanatory variable and the structure of the spatialdependence. The estimation procedure consists of reducing the infinite dimension of thefunctional variable and maximizing a quasi-likelihood function. We establish the consistencyand asymptotic normality of the estimator. The usefulness of the methodology isillustrated via simulations and an application to some real data.In the second part of the thesis, we address some estimation and prediction problemsof real random spatial variables. We start by generalizing the k-nearest neighbors method,namely k-NN, to predict a spatial process at non-observed locations using some covariates.The specificity of the proposed k-NN predictor lies in the fact that it is flexible and allowsa number of heterogeneity in the covariate. We establish the almost complete convergencewith rates of the spatial predictor whose performance is ensured by an application oversimulated and environmental data. In addition, we generalize the partially linear probitmodel of independent data to the spatial case. We use a linear process for disturbancesallowing various spatial dependencies and propose a semiparametric estimation approachbased on weighted likelihood and generalized method of moments methods. We establishthe consistency and asymptotic distribution of the proposed estimators and investigate thefinite sample performance of the estimators on simulated data. We end by an applicationof spatial binary choice models to identify UADT (Upper aerodigestive tract) cancer riskfactors in the north region of France which displays the highest rates of such cancerincidence and mortality of the country.
|
Page generated in 0.0501 seconds