Spelling suggestions: "subject:"ecuaciones diferencial"" "subject:"ecuaciones diferencialmente""
1 |
On some recent variational principlesFigueiredo, Djairo G. de 25 September 2017 (has links)
In this paper we survey some recent variational principies, which have proved to be very useful in the applications to the theory of differential equations, both ordinary and partial. We start with a basic principle due to Ekeland [4}, which provides new proofs to the well known minimax theorems of Ambrosetti - Rabinowitz [2} and Rabinowitz{7}, {8}. For proofs of these results we refer to{8}. We also mention some applications to semilinear elliptic equations.
|
2 |
Generalización de un teorema de P. PainlevéCamacho, César, Scárdua, B. 25 September 2017 (has links)
No description available.
|
3 |
Ecuaciones y sistemas elípticos con crecimiento superlinealSantaria Leuyacc, Yony Raúl, Santaria Leuyacc, Yony Raúl January 2015 (has links)
Estudia ecuaciones elípticas de la forma (P) −∆u + λu = f(x, u), en Ω, u ∈ H1 0 (Ω), donde Ω ⊂ R N (N ≥ 2) es un dominio limitado o Ω = R N y f : Ω × R → R es una función continua con condiciones de crecimiento subcrítico y crítico. También estudia sistemas de ecuaciones elípticas de la forma (S) −∆u = f(x, u, v), em Ω, −∆v = g(x, u, v), em Ω, u, v ∈ H1 0 (Ω), donde Ω ⊂ R N (N ≥ 2) , f, g : Ω × R 2 → R son funciones continuas con condiciones de crecimiento subcrítico. Encuentra soluciones definidas en H1 0 (Ω) × H1 0 (Ω), para sistemas elípticos de tipo gradiente y de tipo hamiltoniano. Para la existencia de soluciones usa Métodos Varacionales, haciendo uso especial del Teorema del Paso de Montaña. / Tesis
|
4 |
Singularity formation for the harmonic map flow from a volume into S²Pesce Reyes, Catalina Leticia January 2018 (has links)
Tesis para optar al grado de Magíster en Ciencias de la Ingeniería, Mención Matemáticas Aplicadas / Memoria para optar al título de Ingeniera Civil Matemática / Consideramos un volumen $V\subset \R^3$ generado al rotar alrededor del eje $Z$ un dominio $\Omega \subset \R^2$ acotado y suave que vive en el plano $XZ$. En este trabajo se construye una solución del flujo de mapa armónico del volumen $V$ a la esfera $S^2$ que revienta en tiempo finito, el problema es
\begin{eqnarray*}
v_t &=& \Delta v + |\nabla v |^2 v \text{ in } V \times (0,T)\\
v &=& v_{\partial V} \text{ in } \partial V \times (0,T)\\
v(\cdot , 0) &=&v_0 \text{ in } V,
\end{eqnarray*}
donde $v: V \times [0,T) \to S^2$, $v_0 : \overline{V} \to S^2$ es suave y $v_{\partial V}=\left. v_0\right|_{\partial V} : \partial V \to S^2$. Dado un punto $q \in \Omega$ de define la circunferencia $c(q)$ generada al rotar el punto $q$ alrededor del eje Z. Se encuentran datos iniciales y de frontera tales que la solución $v$ revienta exactamente en la curva $c(q)$ en un tiempo finito pequeño. La construcción de la solución se hace reduciendo el problema a 2 dimensiones y usando el método de Dávila, Del Pino y Wei \cite{dav} que transforma el problema en un sistema de \textit{inner-outer gluing} que separa el efecto principal de la ecuación cerca y lejos de la singularidad. Se obtiene una solución cuyo orden principal cerca de la singularidad tiene el perfil de un mapa armónico 1-corrotacional escalado.
En la introducción se recuerdan la ecuación de flujo de mapa armónico y su origen, se establece el problema y la reducción a 2 dimensiones. En el primer capítulo se enuncian resultados útiles de topología y análisis funcional, y propiedades probadas en \cite{dav} para los mapas armónicos 1-corrotacionales y el operador linealizado en torno a ellos. En el segundo capítulo se obtiene un ansatz de la solución y se usa el método de Dávila, Del Pino y Wei \cite{dav} para reducir el problema a resolver un sistema de \textit{inner-outer gluing} que después se resuelve usando punto fijo. En el capítulo cuatro se obtienen las hipótesis para el punto fijo mediante estimaciones a priori obtenidas dividiendo el sistema en tres problemas principales: el problema interior, el problema exterior y el problema de los parámetros. En la parte final se concluye con algunas observaciones sobre este trabajo y posibles trabajos futuros en torno a el. / Este trabajo ha sido parcialmente financiado por el proyecto Fondecyt 1150066 y el Centro
de Modelamiento Matemático, Proyecto Basal PFB 03 / Fondecyt 1150066 y CMM - Conicyt PIA AFB170001
|
5 |
Implementación de un esquema de alto orden compacto para hallar la solución de la ecuación del calor bidimensionalPulliti Carrasco, Yelinna Beatriz 06 September 2018 (has links)
En el presente trabajo, el cual está basado en [7] y [8], analizamos dos métodos para construir
esquemas de alto orden compactos para resolver la ecuación del calor bidimensional en un
dominio espacial rectangular. También explicamos paso a paso la construcción de un método
no eficiente y otro eficiente (desde el punto de vista computacional) para calcular esquemas de
alto orden compacto, partiendo desde los esquemas unidimensionales de alto orden hasta finalizar
con el algoritmo respectivo en pseudocódigo, esto con el objetivo de resolver problemas
de valor inicial y condiciones de frontera periódicas para la ecuación del calor bidimensional.
Finalmente estudiamos las condiciones generales de estabilidad para el caso de condiciones
de frontera no periódicas, cuyo análisis es omitido por [7] y [8].
Primeramente definimos h como el tamaño de paso para la discretización espacial, ¢t
como el tamaño de paso para la discretización temporal, y N como la cantidad de operaciones
que deben realizarse para hallar la solución numérica.
El primer método presentado se considera ineficiente, a diferencia del segundo método
que sí se considera eficiente, según el siguiente criterio:
Un esquema numérico se considera eficiente si cumple las tres siguientes condiciones: estabilidad,
orden de aproximación a la solución analítica mayor a O(h2), y complejidad computacional
inferior a O(N3) para el caso unidimensional.
Se prefieren los esquemas implícitos a los explícitos y asumir condiciones de frontera
periódicas, dada la dificultad para hallar esquemas de alto orden compacto estables que consideren
condiciones de frontera tanto periódicas como no periódicas. Finalmente por motivo
de la complejidad computacional al hallar la solución numérica, se prefieren algoritmos optimizados
en lugar de algoritmos iterativos con más de dos bucles anidados, ya que los métodos
de diferencias finitas en general implican operaciones entre vectores y matrices, lo que suele
incrementar la complejidad computacional de los algoritmos empleados en su implementación. / In the present work, that is based on [7] and [8], we analyze two methods to construct high
order compact schemes to solve the bidimentional heat equation in a rectangular domain. Also
we explain step by step the construction of a non efficient method and an eficient one (from the
computational point of view) for calculating high order compact schemes. We start with the
high order unidimensional schemes and end with the respective algorithm in pseudocode, this
is for solving initial value problems with periodic boundary conditions for the bidimensional
heat equation. Finally we study the general conditions for stability in the case of non periodic
boundary conditions. This analysis is omitted by [7] and [8].
First we define h as the spatial discretizing step size, ¢t as the time discretizing step size,
and N as the number of operations to make for finding the numerical solution.
The first shown method is considered inefficient, on the other hand the second one is
considered efficient according to the following criteria:
A numerical scheme is considered efficient if if satisfy these three conditions: stability,
accuracy order to the analytical solution superior to O(h2), and computational complexity
inferior to O(N3) for the unidimensional case.
Implicit schemes are prefered to explicit ones and asumming periodic boundary conditions,
because it is difficult to find stable high order compact schemes with periodic and non
periodic boundary conditions. Finally because of the computational complexity to find the
analytical solution, it is preferred optimized algorithms to iterative altorithms with more
than two nested loops. Finite difference methods imply vectorial and matricial operations,
and this often increments the computational complexity of the implemented algorithms. / Tesis
|
6 |
Ecuaciones diferenciales. MTA1. Modelación de problemas de crecimiento poblacional05 September 2013 (has links)
Soluciones sobre problemas de crecimiento poblacional modelados mediante EDO. Temario: 1. Crecimiento o decrecimiento poblacional. 2. Problemas resueltos. 3. Ejercicios.
|
7 |
Ecuaciones diferenciales. MTA2. Guía de problemas 105 September 2013 (has links)
Desarrollo de ecuaciones diferenciales de variables separables y lineales. Temario: 1. Concepto de solución de una EDO. 2. Ecuación diferencial de variables separables. 3. EDOL de primer orden (factor integrante). 4. Problemas de modelación.
|
8 |
Ecuaciones diferenciales. MTA3. El método de variación de parámetros05 September 2013 (has links)
Desarrollo de ecuaciones diferenciales de orden superior con coeficientes constantes, mediante el método de variación de parámetros.
|
9 |
Sistemas dinámicos hiperbólicosContreras Barandiaran, Gonzalo 25 September 2017 (has links)
No description available.
|
10 |
Estudio de los métodos espectrales en ecuaciones diferenciales de una dimensión y su comparación con el método de diferencias finitasSáenz López, David 09 June 2016 (has links)
En general, encontrar una solución analítica de una ecuación diferencial parcial no es fácil, y más aún cuando ésta ecuación es no lineal. Debido a esto, surgieron varios métodos numéricos para encontrar una solución aproximada a la deseada. Los métodos numéricos más conocidos son: • Métodos de Diferencias Finitas que tuvo su gran auge en la década de 1950. • Métodos de Elementos Finitos que tuvo su gran auge en la década de 1960. • Métodos Espectrales que tuvo su gran auge en la década de 1970. Mientras que los métodos de diferencias finitas dan soluciones aproximadas en los puntos de la malla computacional elegida, los métodos de elementos finitos dan aproximaciones polinomiales continuas o continuas por partes en regiones poligonales (generalmente triangulares en dos dimensiones), mientras que los métodos espectrales brindan soluciones aproximadas en la forma de polinomios sobre todo su dominio.
Los métodos espectrales son una clase de discretización espacial para ecuaciones diferenciales. Las componentes claves para su formulación son las funciones base (llamadas también funciones de aproximación o expansión) y las funciones de prueba. Las funciones base se usan para dar una representación aproximada de la solución. Las funciones de prueba se usan para asegurar que la ecuación diferencial y quizás algunas condiciones de frontera se cumplan tanto como sea posible por la serie truncada de expansión. Esto se consigue minimizando, con respecto a una norma adecuada, el residuo producido por el uso de la expansión truncada en lugar de la solución exacta. Los métodos espectrales tienen un amplio uso en diferentes áreas como: teoría cuántica ([31], [36]) basado en la ecuación Schrödinger que proporciona la descripción teórica de numerosos sistemas en química y física; teoría cinética basada en la ecuación de Boltzmann ([27], [32]) o en la ecuación de Fokker-Planck ([5], [45]); problemas en mecánica de fluidos ([4], [20], [42]). También hay importantes aplicaciones en el escape átomos de la atmósfera del planeta ([14], [51]) como la pérdida de carga de partículas de la tierra ([33], [43]) y del sol [11]. El presente trabajo pretende contribuir en sentar los fundamentos sobre métodos espectrales, para que sean aplicados en futuras investigaciones más elaboradas, así como brindar los códigos de implementación (en Matlab), los cuales raramente se encuentran en forma explícita en la literatura. Este trabajo está organizado de la siguiente manera: el Capítulo 1 abarca las propiedades más importantes de los polinomios ortogonales; en particular, los polinomios de Chebyshev, los cuales son adecuados para representar funciones de dominio finito y sus relaciones de recurrencia asociadas. Además, se presenta un breve repaso de las fórmulas de cuadratura gaussiana. En el Capítulo 2, se presenta en forma detallada los métodos espectrales polinomiales, útiles para problemas con condiciones de frontera no periódicas. Presentamos los métodos de Galerkin, Tau y de Colocación. En el Capítulo 3 se da ejemplos de la implementación numérica de la ecuación del calor usando los métodos de diferencias finitas y los métodos espectrales, usando los polinomios de Chebyshev. Además, se brindan los detalles necesarios para implementar la ecuación de Burger usando los métodos espectrales. / Tesis
|
Page generated in 0.1217 seconds